
calculatoratoz.com

Immiscible Liquids Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Immiscible Liquids Formulas

Immiscible Liquids ©

1) Molecular Mass of Liquid forming Immiscible Mixture with Water
$\mathrm{fx} \mathrm{M}_{\mathrm{B}}=\frac{\left(\mathrm{P}^{\circ} \text { water }\right) \cdot \mathrm{M}_{\text {water }} \cdot \mathrm{W}_{\mathrm{B}}}{\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right) \cdot \mathrm{W}_{\text {water }}}$
Open Calculator
ex $31.8 \mathrm{~g}=\frac{0.53 \mathrm{~Pa} \cdot 18 \mathrm{~g} \cdot 0.1 \mathrm{~g}}{0.25 \mathrm{~Pa} \cdot 0.12 \mathrm{~g}}$
2) Molecular Mass of Liquid in Mixture of Two Immiscible Liquids given Weight of Liquids
$f x \mathrm{M}_{\mathrm{A}}=\frac{\mathrm{W}_{\mathrm{A}} \cdot \mathrm{M}_{\mathrm{B}} \cdot\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right)}{\left(\mathrm{P}_{\mathrm{A}}{ }^{\circ}\right) \cdot \mathrm{W}_{\mathrm{B}}}$
Open Calculator
ex $14.72222 \mathrm{~g}=\frac{0.5 \mathrm{~g} \cdot 31.8 \mathrm{~g} \cdot 0.25 \mathrm{~Pa}}{2.7 \mathrm{~Pa} \cdot 0.1 \mathrm{~g}}$
3) Partial Vapour Pressure of Immiscible Liquid given Partial Pressure of other Liquid
$f \times\left(\mathrm{P}_{\mathrm{A}}{ }^{\circ}\right)=\frac{\mathrm{W}_{\mathrm{A}} \cdot \mathrm{M}_{\mathrm{B}} \cdot\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right)}{\mathrm{M}_{\mathrm{A}} \cdot \mathrm{W}_{\mathrm{B}}}$
ex $2.700408 \mathrm{~Pa}=\frac{0.5 \mathrm{~g} \cdot 31.8 \mathrm{~g} \cdot 0.25 \mathrm{~Pa}}{14.72 \mathrm{~g} \cdot 0.1 \mathrm{~g}}$
4) Ratio of Molecular Mass of 2 Immiscible Liquids
$f \mathrm{fx} \mathrm{M}_{\mathrm{A}: \mathrm{B}}=\frac{\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right) \cdot \mathrm{W}_{\mathrm{A}}}{\left(\mathrm{P}_{\mathrm{A}}{ }^{\circ}\right) \cdot W_{\mathrm{B}}}$
ex $0.462963=\frac{0.25 \mathrm{~Pa} \cdot 0.5 \mathrm{~g}}{2.7 \mathrm{~Pa} \cdot 0.1 \mathrm{~g}}$
5) Ratio of Molecular Masses of Water to Liquid forming Immiscible Mixture
$\mathrm{fx}_{\mathrm{x}} \mathrm{M}_{\mathrm{A}: \mathrm{B}}=\frac{\mathrm{W}_{\text {water }} \cdot\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right)}{\left(\mathrm{P}^{\circ} \text { water }\right) \cdot \mathrm{W}_{\mathrm{B}}}$
Open Calculator
ex $0.566038=\frac{0.12 \mathrm{~g} \cdot 0.25 \mathrm{~Pa}}{0.53 \mathrm{~Pa} \cdot 0.1 \mathrm{~g}}$
6) Ratio of Partial Pressure of 2 Immiscible Liquids given Number of Moles $\boxed{\square}$
$f \mathrm{x} \mathrm{P}_{\mathrm{A}: \mathrm{B}}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{B}}}$
ex $10.81818=\frac{119 \mathrm{~mol}}{11 \mathrm{~mol}}$
7) Ratio of Partial Vapour Pressures of 2 Immiscible Liquids given Weight and Molecular Mass
$\mathrm{fx} \mathrm{P}_{\mathrm{A}: \mathrm{B}}=\frac{\mathrm{W}_{\mathrm{A}} \cdot \mathrm{M}_{\mathrm{B}}}{\mathrm{W}_{\mathrm{B}} \cdot \mathrm{M}_{\mathrm{A}}}$
ex $10.80163=\frac{0.5 \mathrm{~g} \cdot 31.8 \mathrm{~g}}{0.1 \mathrm{~g} \cdot 14.72 \mathrm{~g}}$
8) Ratio of Partial Vapour Pressures of Water with Liquid forming Immiscible Mixture
$f x \mathrm{P}_{\mathrm{W}: \mathrm{B}}=\frac{\mathrm{W}_{\text {water }} \cdot \mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\text {water }} \cdot \mathrm{W}_{\mathrm{B}}}$
Open Calculator
ex $2.12=\frac{0.12 \mathrm{~g} \cdot 31.8 \mathrm{~g}}{18 \mathrm{~g} \cdot 0.1 \mathrm{~g}}$
9) Ratio of Weights of 2 Immiscible Liquids forming Mixture
$f \mathrm{~W} \mathrm{~W}_{\mathrm{A}: \mathrm{B}}=\frac{\left(\mathrm{P}_{\mathrm{A}}{ }^{\circ}\right) \cdot \mathrm{M}_{\mathrm{A}}}{\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right) \cdot \mathrm{M}_{\mathrm{B}}}$
Open Calculator
ex $4.999245=\frac{2.7 \mathrm{~Pa} \cdot 14.72 \mathrm{~g}}{0.25 \mathrm{~Pa} \cdot 31.8 \mathrm{~g}}$
10) Ratio of Weights of Water to Liquid forming Immiscible Mixture
$\mathrm{fx}_{\mathrm{x}} \mathrm{W}_{\mathrm{W}: \mathrm{B}}=\frac{\left(\mathrm{P}^{\mathrm{o}} \text { water }\right) \cdot \mathrm{M}_{\text {water }}}{\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right) \cdot \mathrm{M}_{\mathrm{B}}}$
Open Calculator
ex $1.2=\frac{0.53 \mathrm{~Pa} \cdot 18 \mathrm{~g}}{0.25 \mathrm{~Pa} \cdot 31.8 \mathrm{~g}}$
11) Total Pressure of Mixture of Liquid with Water given Vapour Pressure of Water
$f x$
Open Calculator
$\mathrm{P}_{\text {tot }}=\left(\mathrm{P}^{\mathrm{o}}\right.$ water $)+\left(\frac{\mathrm{W}_{\mathrm{B}} \cdot\left(\mathrm{P}^{\mathrm{o}} \text { water }\right) \cdot \mathrm{M}_{\text {water }}}{\mathrm{W}_{\text {water }} \cdot \mathrm{M}_{\mathrm{B}}}\right)$
ex $0.78 \mathrm{~Pa}=0.53 \mathrm{~Pa}+\left(\frac{0.1 \mathrm{~g} \cdot 0.53 \mathrm{~Pa} \cdot 18 \mathrm{~g}}{0.12 \mathrm{~g} \cdot 31.8 \mathrm{~g}}\right)$
12) Total Pressure of Mixture of Two Immiscible Liquids
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}=\left(\mathrm{P}_{\mathrm{A}}{ }^{\circ}\right)+\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right)$
ex $2.95 \mathrm{~Pa}=2.7 \mathrm{~Pa}+0.25 \mathrm{~Pa}$
13) Total Pressure of Mixture of Water with Liquid given Vapour Pressure凹
$f \mathrm{fx} \mathrm{P}_{\text {tot }}=\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right)+\left(\frac{\mathrm{W}_{\text {water }} \cdot\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right) \cdot \mathrm{M}_{\mathrm{B}}}{\mathrm{W}_{\mathrm{B}} \cdot \mathrm{M}_{\text {water }}}\right)$
ex $0.78 \mathrm{~Pa}=0.25 \mathrm{~Pa}+\left(\frac{0.12 \mathrm{~g} \cdot 0.25 \mathrm{~Pa} \cdot 31.8 \mathrm{~g}}{0.1 \mathrm{~g} \cdot 18 \mathrm{~g}}\right)$
14) Total Vapour Pressure of Mixture of given Partial Pressure of One Liquid
$f \mathrm{f} P=\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right)+\left(\frac{\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right) \cdot \mathrm{W}_{\mathrm{A}} \cdot \mathrm{M}_{\mathrm{B}}}{\mathrm{W}_{\mathrm{B}} \cdot \mathrm{M}_{\mathrm{A}}}\right)$
ex $2.950408 \mathrm{~Pa}=0.25 \mathrm{~Pa}+\left(\frac{0.25 \mathrm{~Pa} \cdot 0.5 \mathrm{~g} \cdot 31.8 \mathrm{~g}}{0.1 \mathrm{~g} \cdot 14.72 \mathrm{~g}}\right)$
15) Vapour Pressure of Liquid forming Immiscible Mixture with Water
$f \mathrm{fx}\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right)=\frac{\mathrm{W}_{\mathrm{B}} \cdot\left(\mathrm{P}^{\circ} \text { water }\right) \cdot \mathrm{M}_{\text {water }}}{\mathrm{W}_{\text {water }} \cdot \mathrm{M}_{\mathrm{B}}}$
ex $0.25 \mathrm{~Pa}=\frac{0.1 \mathrm{~g} \cdot 0.53 \mathrm{~Pa} \cdot 18 \mathrm{~g}}{0.12 \mathrm{~g} \cdot 31.8 \mathrm{~g}}$
16) Vapour Pressure of Water forming Immiscible Mixture with Liquid
$f \mathrm{fx}\left(\mathrm{P}^{\mathrm{o}}\right.$ water $)=\frac{\mathrm{W}_{\text {water }} \cdot\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right) \cdot \mathrm{M}_{\mathrm{B}}}{\mathrm{W}_{\mathrm{B}} \cdot \mathrm{M}_{\text {water }}}$
Open Calculator
ex $0.53 \mathrm{~Pa}=\frac{0.12 \mathrm{~g} \cdot 0.25 \mathrm{~Pa} \cdot 31.8 \mathrm{~g}}{0.1 \mathrm{~g} \cdot 18 \mathrm{~g}}$
17) Weight of Liquid in Mixture of 2 Immiscible Liquids given Weight of other Liquid
fx $\mathrm{W}_{\mathrm{A}}=\frac{\left(\mathrm{P}_{\mathrm{A}}{ }^{\circ}\right) \cdot \mathrm{M}_{\mathrm{A}} \cdot \mathrm{W}_{\mathrm{B}}}{\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right) \cdot \mathrm{M}_{\mathrm{B}}}$
Open Calculator
ex $0.499925 \mathrm{~g}=\frac{2.7 \mathrm{~Pa} \cdot 14.72 \mathrm{~g} \cdot 0.1 \mathrm{~g}}{0.25 \mathrm{~Pa} \cdot 31.8 \mathrm{~g}}$
18) Weight of Liquid required to form Immiscible Mixture with Water
$f \times \mathrm{W}_{\mathrm{B}}=\frac{\mathrm{W}_{\text {water }} \cdot\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right) \cdot \mathrm{M}_{\mathrm{B}}}{\left(\mathrm{P}^{\circ} \text { water }\right) \cdot \mathrm{M}_{\text {water }}}$
Open Calculator
ex $0.1 \mathrm{~g}=\frac{0.12 \mathrm{~g} \cdot 0.25 \mathrm{~Pa} \cdot 31.8 \mathrm{~g}}{0.53 \mathrm{~Pa} \cdot 18 \mathrm{~g}}$
19) Weight of Water required to form Immiscible Mixture with Liquid given Weight

$$
f \times W_{\text {water }}=\frac{\mathrm{W}_{\mathrm{B}} \cdot\left(\mathrm{P}^{\circ} \text { water }\right) \cdot \mathrm{M}_{\text {water }}}{\left(\mathrm{P}_{\mathrm{B}}^{\circ}\right) \cdot \mathrm{M}_{\mathrm{B}}}
$$

$0.12 \mathrm{~g}=\frac{0.1 \mathrm{~g} \cdot 0.53 \mathrm{~Pa} \cdot 18 \mathrm{~g}}{0.25 \mathrm{~Pa} \cdot 31.8 \mathrm{~g}}$

Variables Used

- $\mathbf{M}_{\mathbf{A}}$ Molecular Mass of Liquid A (Gram)
- $\mathbf{M}_{\mathbf{A}: \mathbf{B}}$ Ratio of Molecular Masses of 2 Immiscible Liquids
- $\mathbf{M}_{\mathbf{B}}$ Molecular Mass of Liquid B (Gram)
- $\mathbf{M}_{\text {water }}$ Molecular Mass of Water (Gram)
- $\mathbf{n}_{\mathbf{A}}$ Number of Moles of Liquid A (Mole)
- $\mathbf{n}_{\mathbf{B}}$ Number of Moles of Liquid B (Mole)
- P Total Pressure of Mixture of Immiscible Liquids (Pascal)
- $\mathbf{P}_{\mathbf{A}}{ }^{\circ}$ Vapor Pressure of Pure Component A (Pascal)
- $\mathbf{P}_{\mathbf{A}: \mathrm{B}}$ Ratio of Partial Pressures of 2 Immiscible Liquids
- $\mathbf{P}_{\mathbf{B}}{ }^{\circ}$ Vapor Pressure of Pure Component B (Pascal)
- $\mathbf{P}_{\text {tot }}$ Total Pressure of Mixture of Liquid with Water (Pascal)
- $\mathbf{P}_{\mathbf{W}: \mathbf{B}}$ Ratio of Partial Pressures of Water and Liquid
- \mathbf{P}^{0} water Partial Pressure of Pure Water (Pascal)
- $\mathbf{W}_{\mathbf{A}}$ Weight of Liquid A (Gram)
- $\mathbf{W}_{\mathbf{A}: B}$ Ratio of Weights of 2 Immiscible Liquids
- $\mathbf{W}_{\mathbf{B}}$ Weight of Liquid B (Gram)
- $\mathbf{W}_{\text {W:B }}$ Ratio of Weights of Water and Liquid
- $\mathbf{W}_{\text {water }}$ Weight of Water in Immiscible Mixture (Gram)

Constants, Functions, Measurements used

- Measurement: Weight in Gram (g)

Weight Unit Conversion

- Measurement: Amount of Substance in Mole (mol)

Amount of Substance Unit Conversion

- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

Check other formula lists

- Clausius-Clapeyron Equation Formulas
- Depression in Freezing Point Formulas
- Elevation in Boiling Point Formulas
- Gibb's Phase Rule Formulas $\sqrt{ }$
- Immiscible Liquids Formulas
- Osmotic Pressure Formulas
- Relative Lowering of Vapour Pressure Formulas
- Van't Hoff Factor Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

