

Design of an Aerated Grit Chamber Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Design of an Aerated Grit Chamber Formulas

Design of an Aerated Grit Chamber

1) Air Supply required in Grit Chamber 🗗

$$\left| \mathbf{A}_{\mathrm{s}} = rac{\mathrm{A}}{\mathrm{L}}
ight|$$

Open Calculator

$$m ex = 0.007659m^3/s = rac{0.053m^2/s}{6.92m}$$

2) Assumed Grit Quantity given Volume of Grit

$$\mathbf{fx} egin{pmatrix} \mathbf{Q}_{\mathrm{g}} = rac{V_{\mathrm{g}}}{V} \end{bmatrix}$$

Open Calculator

$$\boxed{25 = \frac{500 \mathrm{m}^3}{20}}$$

3) Chamber Length using Air Supply required

$$\mathbf{L} = \left(rac{A}{A_s}
ight)$$

Open Calculator 🗗

$$oxed{f ex} 6.973684 {
m m} = \left(rac{0.053 {
m m}^2/{
m s}}{0.0076 {
m m}^3/{
m s}}
ight)$$

4) Chosen Air Supply given Air Supply required

fx $A = A_s \cdot L$

Open Calculator 🚰

Open Calculator 2

Open Calculator 2

Open Calculator G

- $0.052592 \mathrm{m}^2/\mathrm{s} = 0.0076 \mathrm{m}^3/\mathrm{s} \cdot 6.92 \mathrm{m}^3$
- 5) Chosen Depth given Width of Grit Chamber
- $D = \frac{W}{R}$
- $2.524272 \text{m} = \frac{2.6 \text{m}}{1.03}$
- 6) Depth given Length of Grit Chamber
- $\mathbf{D} = \left(rac{\mathrm{V_T}}{\mathrm{L} \cdot \mathrm{W}}
 ight)$
- $oxed{ex} 2.501112 \mathrm{m} = \left(rac{45 \mathrm{m}^3}{6.92 \mathrm{m} \cdot 2.6 \mathrm{m}}
 ight)$
- 7) Detention Time given Volume of Each Grit Chamber
- $\mathbf{T}_{\mathrm{d}} = rac{\mathrm{V}_{\mathrm{T}}}{\mathrm{Q}_{\mathrm{p}}}$
- $\boxed{\mathbf{ex} \text{ 3min} = \frac{45\text{m}^3}{0.25\text{m}^3/\text{s}}}$

8) Length of Grit Chamber

 $\mathbf{L} = \left(rac{\mathrm{V_T}}{\mathrm{W} \cdot \mathrm{D}}
ight)$

Open Calculator 🗗

 $= \left(\frac{45 \text{m}^3}{2.6 \text{m} \cdot 2.501 \text{m}} \right)$

9) Peak Flow Rate given Volume of Each Grit Chamber

 \mathbf{f} $\mathbf{Q}_\mathrm{p} = rac{\mathrm{V}_\mathrm{T}}{\mathrm{T}_\mathrm{d}}$

Open Calculator

 $0.25 {
m m}^{
m 3}/{
m s} = rac{45 {
m m}^{
m 3}}{3 {
m min}}$

10) Selected Width-Ratio given Width of Grit Chamber

 $\mathbb{R} = \frac{W}{D}$

Open Calculator

 $\boxed{1.039584 = \frac{2.6 \text{m}}{2.501 \text{m}}}$

11) Volume Flow Rate given Volume of Grit

Open Calculator

 $20 = \frac{500 \text{m}^3}{25}$

12) Volume of Each Grit Chamber

fx $V_{
m T} = \left({
m Q}_{
m p} \cdot {
m T}_{
m d}
ight)$

Open Calculator

 $45 \text{m}^3 = (0.25 \text{m}^3/\text{s} \cdot 3 \text{min})$ 13) Volume of Grit

Open Calculator 2

fx $V_{
m g} = Q_{
m g} \cdot V$

ex $500 \text{m}^3 = 25 \cdot 20$

14) Volume of Grit Chamber given Length of Grit Chamber 🛂

fx $V_{
m T} = ({
m L} \cdot {
m W} \cdot {
m D})$

Open Calculator

ex 44.99799m³ = (6.92m · 2.6m · 2.501m)

15) Width of Grit Chamber 🛂

Open Calculator 2

 $\mathbf{ex} \ 2.57603\mathbf{m} = (1.03 \cdot 2.501\mathbf{m})$

16) Width using Length of Grit Chamber 🗗

 $\mathbf{f} \mathbf{x} \mathbf{W} = (\mathbf{R} \cdot \mathbf{D})$

Open Calculator

 $W = \left(rac{V_{\mathrm{T}}}{\mathrm{D}\cdot\mathrm{L}}
ight)$

ex $2.600116 \text{m} = \left(\frac{45 \text{m}^3}{2.501 \text{m} \cdot 6.92 \text{m}}\right)$

Variables Used

- A Chosen Air Supply (Square Meter per Second)
- **A**_S Air Supply Required (Cubic Meter per Second)
- **D** Depth of Grit Chamber (Meter)
- L Length of Grit Chamber (Meter)
- Q_q Assumed Grit Quantity in Cubic Meter per MLD
- Qp Peak Flow Rate (Cubic Meter per Second)
- R Selected Width Ratio
- T_d Detention Time (Minute)
- V Volumetric Flow Rate in Million Litres per Day
- V_a Volume of Grit (Cubic Meter)
- V_T Volume of Grit Chamber (Cubic Meter)
- W Width of Grit Chamber (Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Minute (min)

 Time Unit Conversion
- Measurement: Volume in Cubic Meter (m³)

 Volume Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)
 Volumetric Flow Rate Unit Conversion
- Measurement: Kinematic Viscosity in Square Meter per Second (m²/s)
 Kinematic Viscosity Unit Conversion

Check other formula lists

- Design of a Chlorination System Design of an Aerobic Digester for Wastewater Disinfection Formulas (
- Design of a Circular Settling Tank Formulas
- Design of a Solid Bowl Centrifuge Formulas G for Sludge Dewatering Formulas
- Design of an Aerated Grit Chamber Formulas

- Formulas
- Estimating the Design Sewage Discharge Formulas
- Population Forecast Method
- Sanitary System Sewer Design Formulas C

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/2/2024 | 9:35:49 AM UTC

Please leave your feedback here...

