unitsconverters.com

Orifices and Mouthpieces Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here..

List of 33 Orifices and Mouthpieces Formulas

Orifices and Mouthpieces

Flow Head ©

1) Absolute pressure head at constant head and atmospheric pressure head
$f \mathrm{x} \mathrm{H}_{\mathrm{AP}}=\mathrm{H}_{\mathrm{a}}+\mathrm{H}_{\mathrm{c}}-\left(\left(\left(\frac{\mathrm{V}_{\mathrm{o}}}{0.62}\right)^{2}\right) \cdot\left(\frac{1}{2 \cdot 9.81}\right)\right)$
ex $13.48909 \mathrm{~m}=7 \mathrm{~m}+10.5 \mathrm{~m}-\left(\left(\left(\frac{5.5 \mathrm{~m} / \mathrm{s}}{0.62}\right)^{2}\right) \cdot\left(\frac{1}{2 \cdot 9.81}\right)\right)$
2) Atmospheric pressure head at constant head and absolute pressure head
$f \mathrm{x} \mathrm{H}_{\mathrm{a}}=\mathrm{H}_{\mathrm{AP}}-\mathrm{H}_{\mathrm{c}}+\left(\left(\left(\frac{\mathrm{V}_{\mathrm{o}}}{0.62}\right)^{2}\right) \cdot\left(\frac{1}{2 \cdot 9.81}\right)\right)$
ex $7.510911 \mathrm{~m}=14 \mathrm{~m}-10.5 \mathrm{~m}+\left(\left(\left(\frac{5.5 \mathrm{~m} / \mathrm{s}}{0.62}\right)^{2}\right) \cdot\left(\frac{1}{2 \cdot 9.81}\right)\right)$
3) Head of Liquid above Centre of Orifice
$f \mathrm{fx}=\frac{\mathrm{V}_{\mathrm{th}}^{2}}{2 \cdot 9.81}$
ex $4.12844 \mathrm{~m}=\frac{(9 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot 9.81}$
4) Head of liquid for head loss and coefficient of velocity [
$\mathrm{fx} \mathrm{H}=\frac{\mathrm{h}_{\mathrm{f}}}{1-\left(\mathrm{C}_{\mathrm{v}}^{2}\right)}$
ex $7.8125 \mathrm{~m}=\frac{1.2 \mathrm{~m}}{1-\left((0.92)^{2}\right)}$
5) Loss of head due to fluid resistance \llbracket
$f \mathrm{f} \mathrm{h}_{\mathrm{f}}=\mathrm{H} \cdot\left(1-\left(\mathrm{C}_{\mathrm{v}}^{2}\right)\right)$
ex $6.144 \mathrm{~m}=40 \mathrm{~m} \cdot\left(1-\left((0.92)^{2}\right)\right)$
6) Loss of head due to sudden enlargement
$f \mathrm{x} \mathrm{h}_{\mathrm{L}}=\frac{\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{o}}\right)^{2}}{2 \cdot 9.81}$
ex $0.37156 \mathrm{~m}=\frac{(8.2 \mathrm{~m} / \mathrm{s}-5.5 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot 9.81}$

Flow Rate

7) Coefficient of discharge
$\mathrm{fx} \mathrm{C}_{\mathrm{d}}=\frac{\mathrm{Q}_{\mathrm{a}}}{\mathrm{Q}_{\mathrm{th}}}$
ex $0.875=\frac{0.7 \mathrm{~m}^{3} / \mathrm{s}}{0.8 \mathrm{~m}^{3} / \mathrm{s}}$
8) Coefficient of discharge for area and velocity
$f \mathrm{f} \mathrm{C}_{\mathrm{d}}=\frac{\mathrm{v}_{\mathrm{a}} \cdot \mathrm{A}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{th}} \cdot \mathrm{A}_{\mathrm{t}}}$
ex $0.820513=\frac{8 \mathrm{~m} / \mathrm{s} \cdot 4.80 \mathrm{~m}^{2}}{9 \mathrm{~m} / \mathrm{s} \cdot 5.2 \mathrm{~m}^{2}}$
9) Coefficient of Discharge given Time for Emptying Tank
$f \mathrm{f} \mathrm{C}_{\mathrm{d}}=\frac{2 \cdot \mathrm{~A}_{\mathrm{T}} \cdot\left(\left(\sqrt{\mathrm{H}_{\mathrm{i}}}\right)-\left(\sqrt{\mathrm{H}_{\mathrm{f}}}\right)\right)}{\mathrm{t}_{\text {total }} \cdot \mathrm{a} \cdot \sqrt{2 \cdot 9.81}}$
$\mathbf{e x} 0.786502=\frac{2 \cdot 1144 \mathrm{~m}^{2} \cdot((\sqrt{24 \mathrm{~m}})-(\sqrt{20.1 \mathrm{~m}}))}{30 \mathrm{~s} \cdot 9.1 \mathrm{~m}^{2} \cdot \sqrt{2 \cdot 9.81}}$
10) Coefficient of Discharge given Time of Emptying Circular Horizontal Tank
$f \mathrm{f} \mathrm{C}_{\mathrm{d}}=\frac{4 \cdot \mathrm{~L} \cdot\left(\left(\left(\left(2 \cdot \mathrm{r}_{1}\right)-\mathrm{H}_{\mathrm{f}}\right)^{\frac{3}{2}}\right)-\left(\left(2 \cdot \mathrm{r}_{1}\right)-\mathrm{H}_{\mathrm{i}}\right)^{\frac{3}{2}}\right)}{3 \cdot \mathrm{t}_{\text {total }} \cdot \mathrm{a} \cdot(\sqrt{2 \cdot 9.81})}$
ex $0.26326=\frac{4 \cdot 31 \mathrm{~m} \cdot\left(\left(((2 \cdot 12 \mathrm{~m})-20.1 \mathrm{~m})^{\frac{3}{2}}\right)-((2 \cdot 12 \mathrm{~m})-24 \mathrm{~m})^{\frac{3}{2}}\right)}{3 \cdot 30 \mathrm{~s} \cdot 9.1 \mathrm{~m}^{2} \cdot(\sqrt{2 \cdot 9.81})}$
11) Coefficient of Discharge given Time of Emptying Hemispherical Tank
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{d}}=\frac{\pi \cdot\left(\left(\left(\frac{4}{3}\right) \cdot \mathrm{R}_{\mathrm{t}} \cdot\left(\left(\mathrm{H}_{\mathrm{i}}^{\frac{3}{2}}\right)-\left(\mathrm{H}_{\mathrm{f}}^{\frac{3}{2}}\right)\right)\right)-\left(\left(\frac{2}{5}\right) \cdot\left(\left(\mathrm{H}_{\mathrm{i}}^{\frac{5}{2}}\right)-\left(\mathrm{H}_{\mathrm{f}}\right)^{\frac{5}{2}}\right)\right)\right)}{\mathrm{t}_{\text {total }} \cdot \mathrm{a} \cdot(\sqrt{2 \cdot 9.81})}$
ex $0.376754=\frac{\pi \cdot\left(\left(\left(\frac{4}{3}\right) \cdot 15 \mathrm{~m} \cdot\left(\left((24 \mathrm{~m})^{\frac{3}{2}}\right)-\left((20.1 \mathrm{~m})^{\frac{3}{2}}\right)\right)\right)-\left(\left(\frac{2}{5}\right) \cdot\left(\left((24 \mathrm{~m})^{\frac{5}{2}}\right)-(20.1 \mathrm{~m})^{\frac{5}{2}}\right)\right)\right)}{30 \mathrm{~s} \cdot 9.1 \mathrm{~m}^{2} \cdot(\sqrt{2 \cdot 9.81})}$
12) Discharge in Borda's Mouthpiece Running Free
$f \times \mathrm{Q}_{\mathrm{M}}=0.5 \cdot \mathrm{~A} \cdot \sqrt{2 \cdot 9.81 \cdot \mathrm{H}_{\mathrm{c}}}$
ex $36.60027 \mathrm{~m}^{3} / \mathrm{s}=0.5 \cdot 5.1 \mathrm{~m}^{2} \cdot \sqrt{2 \cdot 9.81 \cdot 10.5 \mathrm{~m}}$
13) Discharge in Borda's Mouthpiece Running Full
$f \times \mathrm{Q}_{\mathrm{M}}=0.707 \cdot \mathrm{~A} \cdot \sqrt{2 \cdot 9.81 \cdot \mathrm{H}_{\mathrm{c}}}$
ex $51.75279 \mathrm{~m}^{3} / \mathrm{s}=0.707 \cdot 5.1 \mathrm{~m}^{2} \cdot \sqrt{2 \cdot 9.81 \cdot 10.5 \mathrm{~m}}$
14) Discharge in Convergent-Divergent Mouthpiece
$f \times \mathrm{Q}_{\mathrm{M}}=\mathrm{a}_{\mathrm{c}} \cdot \sqrt{2 \cdot 9.81 \cdot \mathrm{H}_{\mathrm{c}}}$
ex $30.1414 \mathrm{~m}^{3} / \mathrm{s}=2.1 \mathrm{~m}^{2} \cdot \sqrt{2 \cdot 9.81 \cdot 10.5 \mathrm{~m}}$
15) Discharge through fully sub-merged orifice
$\mathrm{fx} \mathrm{Q}_{\mathrm{O}}=\mathrm{C}_{\mathrm{d}} \cdot \mathrm{w} \cdot\left(\mathrm{H}_{\text {bottom }}-\mathrm{H}_{\text {top }}\right) \cdot\left(\sqrt{2 \cdot 9.81 \cdot \mathrm{H}_{\mathrm{L}}}\right)$
ex $4.157178 \mathrm{~m}^{3} / \mathrm{s}=0.87 \cdot 3.5 \mathrm{~m} \cdot(20 \mathrm{~m}-19.9 \mathrm{~m}) \cdot(\sqrt{2 \cdot 9.81 \cdot 9.5 \mathrm{~m}})$
16) Discharge through large rectangular orifice
fx $\mathrm{Q}_{\mathrm{O}}=\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{b} \cdot(\sqrt{2 \cdot 9.81}) \cdot\left(\left(\mathrm{H}_{\text {bottom }}^{1.5}\right)-\left(\mathrm{H}_{\text {top }}^{1.5}\right)\right)$
$3.786716 \mathrm{~m}^{3} / \mathrm{s}=\left(\frac{2}{3}\right) \cdot 0.87 \cdot 2.2 \mathrm{~m} \cdot(\sqrt{2 \cdot 9.81}) \cdot\left(\left((20 \mathrm{~m})^{1.5}\right)-\left((19.9 \mathrm{~m})^{1.5}\right)\right)$
17) Discharge through partially sub-merged orifice
$\mathrm{Q}_{\mathrm{O}}=\left(\mathrm{C}_{\mathrm{d}} \cdot \mathrm{w} \cdot\left(\mathrm{H}_{\text {bottom }}-\mathrm{H}_{\mathrm{L}}\right) \cdot\left(\sqrt{2 \cdot 9.81 \cdot \mathrm{H}_{\mathrm{L}}}\right)\right)+\left(\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{b} \cdot(\sqrt{2 \cdot 9.81}) \cdot\left(\left(\mathrm{H}_{\mathrm{L}}^{1.5}\right.\right.\right.$
ex
$100.2577 \mathrm{~m}^{3} / \mathrm{s}=(0.87 \cdot 3.5 \mathrm{~m} \cdot(20 \mathrm{~m}-9.5 \mathrm{~m}) \cdot(\sqrt{2 \cdot 9.81 \cdot 9.5 \mathrm{~m}}))+\left(\left(\frac{2}{3}\right) \cdot 0.87 \cdot 2.2 \mathrm{~m} \cdot(\sqrt{2 \cdot 9.81}) \cdot(((\right.$

Geometric Dimensions \mathbb{E}

18) Area at vena contracta for discharge and constant head
$f \mathrm{x} \mathrm{a}_{\mathrm{c}}=\frac{\mathrm{Q}_{\mathrm{M}}}{\sqrt{2 \cdot 9.81 \cdot \mathrm{H}_{\mathrm{c}}}}$
ex $2.104083 \mathrm{~m}^{2}=\frac{30.2 \mathrm{~m}^{3} / \mathrm{s}}{\sqrt{2 \cdot 9.81 \cdot 10.5 \mathrm{~m}}}$
19) Area of Mouthpiece in Borda's Mouthpiece Running Free
$\mathrm{fx} \mathrm{A}=\frac{\mathrm{Q}_{\mathrm{M}}}{0.5 \cdot \sqrt{2 \cdot 9.81 \cdot \mathrm{H}_{\mathrm{c}}}}$
ex $4.208165 \mathrm{~m}^{2}=\frac{30.2 \mathrm{~m}^{3} / \mathrm{s}}{0.5 \cdot \sqrt{2 \cdot 9.81 \cdot 10.5 \mathrm{~m}}}$
20) Area of Mouthpiece in Borda's Mouthpiece Running Full
$\mathrm{fx} \mathrm{A}=\frac{\mathrm{Q}_{\mathrm{M}}}{0.707 \cdot \sqrt{2 \cdot 9.81 \cdot \mathrm{H}_{\mathrm{c}}}}$
ex $2.976072 \mathrm{~m}^{2}=\frac{30.2 \mathrm{~m}^{3} / \mathrm{s}}{0.707 \cdot \sqrt{2 \cdot 9.81 \cdot 10.5 \mathrm{~m}}}$

21) Area of Orifice given Time of Emptying Hemispherical Tank

$f \mathrm{fx}=\frac{\pi \cdot\left(\left(\left(\frac{4}{3}\right) \cdot \mathrm{R}_{\mathrm{t}} \cdot\left(\left(\mathrm{H}_{\mathrm{i}}^{\frac{3}{2}}\right)-\left(\mathrm{H}_{\mathrm{f}}^{\frac{3}{2}}\right)\right)\right)-\left(\left(\frac{2}{5}\right) \cdot\left(\left(\mathrm{H}_{\mathrm{i}}^{\frac{5}{2}}\right)-\left(\mathrm{H}_{\mathrm{f}}\right)^{\frac{5}{2}}\right)\right)\right)}{\mathrm{t}_{\text {total }} \cdot \mathrm{C}_{\mathrm{d}} \cdot(\sqrt{2 \cdot 9.81})}$
$3.940758 \mathrm{~m}^{2}=\frac{\pi \cdot\left(\left(\left(\frac{4}{3}\right) \cdot 15 \mathrm{~m} \cdot\left(\left((24 \mathrm{~m})^{\frac{3}{2}}\right)-\left((20.1 \mathrm{~m})^{\frac{3}{2}}\right)\right)\right)-\left(\left(\frac{2}{5}\right) \cdot\left(\left((24 \mathrm{~m})^{\frac{5}{2}}\right)-(20.1 \mathrm{~m})^{\frac{5}{2}}\right)\right)\right)}{30 \mathrm{~s} \cdot 0.87 \cdot(\sqrt{2 \cdot 9.81})}$
22) Area of Tank given Time for Emptying Tank
$f \times \mathrm{A}_{\mathrm{T}}=\frac{\mathrm{t}_{\text {total }} \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{a} \cdot(\sqrt{2 \cdot 9.81})}{2 \cdot\left(\left(\sqrt{\mathrm{H}_{\mathrm{i}}}\right)-\left(\sqrt{\mathrm{H}_{\mathrm{f}}}\right)\right)}$
ex $1265.451 \mathrm{~m}^{2}=\frac{30 \mathrm{~s} \cdot 0.87 \cdot 9.1 \mathrm{~m}^{2} \cdot(\sqrt{2 \cdot 9.81})}{2 \cdot((\sqrt{24 \mathrm{~m}})-(\sqrt{20.1 \mathrm{~m}}))}$
23) Coefficient of Contraction given Area of Orifice
$f \mathrm{C} \mathrm{C}_{\mathrm{c}}=\frac{\mathrm{A}_{\mathrm{c}}}{\mathrm{a}}$
ex $0.549451=\frac{5 \mathrm{~m}^{2}}{9.1 \mathrm{~m}^{2}}$
24) Horizontal distance for coefficient of velocity and vertical distance
$f \mathrm{f} R=\mathrm{C}_{\mathrm{v}} \cdot(\sqrt{4 \cdot \mathrm{~V} \cdot \mathrm{H}})$
ex $23.27436 \mathrm{~m}=0.92 \cdot(\sqrt{4 \cdot 4 \mathrm{~m} \cdot 40 \mathrm{~m}})$
25) Vertical distance for coefficient of velocity and horizontal distance
f* $\mathrm{V}=\frac{\mathrm{R}^{2}}{4 \cdot\left(\mathrm{C}_{\mathrm{v}}^{2}\right) \cdot \mathrm{H}}$
$\mathrm{ex} 3.90625 \mathrm{~m}=\frac{(23 \mathrm{~m})^{2}}{4 \cdot\left((0.92)^{2}\right) \cdot 40 \mathrm{~m}}$

Velocity and Time

26) Coefficient of velocity
f. $\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{v}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{th}}}$
ex $0.888889=\frac{8 \mathrm{~m} / \mathrm{s}}{9 \mathrm{~m} / \mathrm{s}}$
27) Coefficient of velocity for horizontal and vertical distance
fx $\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{R}}{\sqrt{4 \cdot \mathrm{~V} \cdot \mathrm{H}}}$
ex $0.909155=\frac{23 \mathrm{~m}}{\sqrt{4 \cdot 4 \mathrm{~m} \cdot 40 \mathrm{~m}}}$
28) Coefficient of Velocity given Head Loss
$f \mathrm{fx} \mathrm{C}_{\mathrm{v}}=\sqrt{1-\left(\frac{\mathrm{h}_{\mathrm{f}}}{\mathrm{H}}\right)}$
ex $0.984886=\sqrt{1-\left(\frac{1.2 m}{40 \mathrm{~m}}\right)}$
29) Theoretical velocity
$\mathrm{fx} \mathrm{v}=\sqrt{2 \cdot 9.81 \cdot \mathrm{H}_{\mathrm{p}}}$
ex $28.7061 \mathrm{~m} / \mathrm{s}=\sqrt{2 \cdot 9.81 \cdot 42 \mathrm{~m}}$
30) Time of Emptying Circular Horizontal Tank
$f \mathbf{f} \mathrm{t}_{\text {total }}=\frac{4 \cdot \mathrm{~L} \cdot\left(\left(\left(\left(2 \cdot \mathrm{r}_{1}\right)-\mathrm{H}_{\mathrm{f}}\right)^{\frac{3}{2}}\right)-\left(\left(2 \cdot \mathrm{r}_{1}\right)-\mathrm{H}_{\mathrm{i}}\right)^{\frac{3}{2}}\right)}{3 \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{a} \cdot(\sqrt{2 \cdot 9.81})}$
$\operatorname{ex} 9.077938 \mathrm{~s}=\frac{4 \cdot 31 \mathrm{~m} \cdot\left(\left(((2 \cdot 12 \mathrm{~m})-20.1 \mathrm{~m})^{\frac{3}{2}}\right)-((2 \cdot 12 \mathrm{~m})-24 \mathrm{~m})^{\frac{3}{2}}\right)}{3 \cdot 0.87 \cdot 9.1 \mathrm{~m}^{2} \cdot(\sqrt{2 \cdot 9.81})}$

31) Time of Emptying Hemispherical Tank

$f x \mathrm{t}_{\text {total }}=\frac{\pi \cdot\left(\left(\left(\frac{4}{3}\right) \cdot \mathrm{R}_{\mathrm{t}} \cdot\left(\left(\mathrm{H}_{\mathrm{i}}^{1.5}\right)-\left(\mathrm{H}_{\mathrm{f}}^{1.5}\right)\right)\right)-\left(0.4 \cdot\left(\left(\mathrm{H}_{\mathrm{i}}^{\frac{5}{2}}\right)-\left(\mathrm{H}_{\mathrm{f}}\right)^{\frac{5}{2}}\right)\right)\right)}{\mathrm{C}_{\mathrm{d}} \cdot \mathrm{a} \cdot(\sqrt{2 \cdot 9.81})}$
$\operatorname{ex} 12.99151 \mathrm{~s}=\frac{\pi \cdot\left(\left(\left(\frac{4}{3}\right) \cdot 15 \mathrm{~m} \cdot\left(\left((24 \mathrm{~m})^{1.5}\right)-\left((20.1 \mathrm{~m})^{1.5}\right)\right)\right)-\left(0.4 \cdot\left(\left((24 \mathrm{~m})^{\frac{5}{2}}\right)-(20.1 \mathrm{~m})^{\frac{5}{2}}\right)\right)\right)}{0.87 \cdot 9.1 \mathrm{~m}^{2} \cdot(\sqrt{2 \cdot 9.81})}$
32) Time of Emptying Tank through Orifice at Bottom
$f x t_{\text {total }}=\frac{2 \cdot \mathrm{~A}_{\mathrm{T}} \cdot\left(\left(\sqrt{\mathrm{H}_{\mathrm{i}}}\right)-\left(\sqrt{\mathrm{H}_{\mathrm{f}}}\right)\right)}{\mathrm{C}_{\mathrm{d}} \cdot \mathrm{a} \cdot \sqrt{2 \cdot 9.81}}$
$\operatorname{ex} 27.12077 \mathrm{~s}=\frac{2 \cdot 1144 \mathrm{~m}^{2} \cdot((\sqrt{24 \mathrm{~m}})-(\sqrt{20.1 \mathrm{~m}}))}{0.87 \cdot 9.1 \mathrm{~m}^{2} \cdot \sqrt{2 \cdot 9.81}}$
33) Velocity of liquid at $\mathrm{C}-\mathrm{C}$ for Hc, Ha, and H
$f \times{ }^{V_{i}=\sqrt{2 \cdot 9.81 \cdot\left(H_{a}+H_{c}-H_{A P}\right)}}$
ex $8.286736 \mathrm{~m} / \mathrm{s}=\sqrt{2 \cdot 9.81 \cdot(7 \mathrm{~m}+10.5 \mathrm{~m}-14 \mathrm{~m})}$

Variables Used

- a Area of Orifice (Square Meter)
- A Area (Square Meter)
- $\mathbf{A}_{\mathbf{a}}$ Actual Area (Square Meter)
- $\mathbf{a}_{\mathbf{c}}$ Area at Vena Contracta (Square Meter)
- $\mathbf{A}_{\mathbf{c}}$ Area of jet (Square Meter)
- $\mathbf{A}_{\mathbf{t}}$ Theoretical area (Square Meter)
- $\mathbf{A}_{\mathbf{T}}$ Area of Tank (Square Meter)
- b Thickness of Dam (Meter)
- $\mathbf{C}_{\mathbf{c}}$ Coefficient of Contraction
- C $_{\mathrm{d}}$ Coefficient of Discharge
- C_{v} Coefficient of Velocity
- H Head of the liquid (Meter)
- H_{a} Atmospheric Pressure Head (Meter)
- H_{AP} Absolute Pressure Head (Meter)
- $\mathbf{H}_{\text {bottom }}$ Height of liquid bottom edge (Meter)
- $\mathbf{H}_{\mathbf{c}}$ Constant Head (Meter)
- \mathbf{h}_{f} Head Loss (Meter)
- \mathbf{H}_{f} Final height of liquid (Meter)
- $\mathbf{H}_{\mathbf{i}}$ Initial height of liquid (Meter)
- \mathbf{h}_{L} Loss of Head (Meter)
- H_{L} Difference in liquid level (Meter)
- $\mathbf{H}_{\mathbf{p}}$ Pelton Head (Meter)
- $H_{\text {top }}$ Height of Liquid Top Edge (Meter)
- L Length (Meter)
- $\mathbf{Q}_{\mathbf{a}}$ Actual Discharge (Cubic Meter per Second)
- $\mathbf{Q}_{\mathbf{M}}$ Discharge through Mouthpiece (Cubic Meter per Second)
- $\mathbf{Q}_{\mathbf{O}}$ Discharge through Orifice (Cubic Meter per Second)
- $\mathbf{Q}_{\text {th }}$ Theoretical Discharge (Cubic Meter per Second)
- R Horizontal Distance (Meter)
- \mathbf{r}_{1} Radius 1 (Meter)
- $\mathbf{R}_{\mathbf{t}}$ Hemispherical tank radius (Meter)
- $\boldsymbol{t}_{\text {total }}$ Total Time Taken (Second)
- v Velocity (Meter per Second)
- V Vertical distance (Meter)
- $\mathbf{V}_{\mathbf{a}}$ Actual velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{i}}$ Velocity of Liquid Inlet (Meter per Second)
- $\mathbf{V}_{\mathbf{o}}$ Velocity of Liquid Outlet (Meter per Second)
- $\mathbf{V}_{\text {th }}$ Theoretical velocity (Meter per Second)
- w Width (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion

Check other formula lists

- Notches and Weirs Formulas
- Orifices and Mouthpieces Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

