
calculatoratoz.com

unitsconverters.com

Linear Motion Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Linear Motion Formulas

Linear Motion ©

Motion under Force of Gravity ©

1) Distance Travelled in Free Fall under Gravity given Initial Velocity and Time
$f \mathrm{fx}=\mathrm{d} \cdot \mathrm{t}+\frac{1}{2} \cdot[\mathrm{~g}] \cdot \mathrm{t}^{2}$
Open Calculator
ex $457.2629 \mathrm{~m}=31 \mathrm{~m} / \mathrm{s} \cdot(7 \mathrm{~s})+\frac{1}{2} \cdot[\mathrm{~g}] \cdot(7 \mathrm{~s})^{2}$
2) Distance Travelled when Particle is Projected Upwards using Initial Velocity and Time
$f_{\mathrm{x}}^{\mathrm{x}} \mathrm{d}=-\mathrm{u} \cdot \mathrm{t}+\frac{1}{2} \cdot[\mathrm{~g}] \cdot \mathrm{t}^{2}$
ex $23.26292 \mathrm{~m}=-31 \mathrm{~m} / \mathrm{s} \cdot(7 \mathrm{~s})+\frac{1}{2} \cdot[\mathrm{~g}] \cdot(7 \mathrm{~s})^{2}$
3) Final Velocity in Free Fall under Gravity given Initial Velocity and Displacement
$f \mathrm{f} \mathrm{v}_{\mathrm{f}}=\sqrt{\mathrm{u}^{2}+2 \cdot[\mathrm{~g}] \cdot \mathrm{d}}$
ex $53.60314 \mathrm{~m} / \mathrm{s}=\sqrt{(31 \mathrm{~m} / \mathrm{s})^{2}+2 \cdot[\mathrm{~g}] \cdot 97.5 \mathrm{~m}}$
4) Final Velocity in Free Fall under Gravity given Initial Velocity and Time E
$\mathrm{fx}_{\mathrm{x}} \mathrm{v}_{\mathrm{f}}=\mathrm{u}+[\mathrm{g}] \cdot \mathrm{t}$
Open Calculator
ex $99.64655 \mathrm{~m} / \mathrm{s}=31 \mathrm{~m} / \mathrm{s}+[\mathrm{g}] \cdot 7 \mathrm{~s}$
5) Final Velocity when Particle is Projected Upwards using Initial Velocity and Time
$\mathrm{f}_{\mathrm{x}} \mathrm{v}_{\mathrm{f}}=-\mathrm{u}+[\mathrm{g}] \cdot \mathrm{t}$
ex $37.64655 \mathrm{~m} / \mathrm{s}=-31 \mathrm{~m} / \mathrm{s}+[\mathrm{g}] \cdot 7 \mathrm{~s}$
Motion under Uniform Acceleration
6) Average Velocity
$\mathrm{fx}_{\mathrm{x}} \mathrm{v}_{\text {avg }}=\frac{\mathrm{u}+\mathrm{v}_{\mathrm{f}}}{2}$
$\mathrm{ex} 37.5 \mathrm{~m} / \mathrm{s}=\frac{31 \mathrm{~m} / \mathrm{s}+44 \mathrm{~m} / \mathrm{s}}{2}$
7) Displacement of Particle
$\mathrm{fx} d=\frac{\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{u}^{2}}{2 \cdot \mathrm{a}}$
ex $97.5 \mathrm{~m}=\frac{(44 \mathrm{~m} / \mathrm{s})^{2}-(31 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot 5 \mathrm{~m} / \mathrm{s}^{2}}$
8) Distance Traveled by Particle given Average Velocity
$\mathrm{f}_{\mathrm{x}} \mathrm{D}=\mathrm{v}_{a v g} \cdot \mathrm{t}$
ex $262.5 \mathrm{~m}=37.5 \mathrm{~m} / \mathrm{s} \cdot 7 \mathrm{~s}$
9) Distance Travelled by Particle
$\mathrm{fx} \mathrm{D}=\left(\frac{\mathrm{u}+\mathrm{v}_{\mathrm{f}}}{2}\right) \cdot \mathrm{t}$
Open Calculator
ex $262.5 \mathrm{~m}=\left(\frac{31 \mathrm{~m} / \mathrm{s}+44 \mathrm{~m} / \mathrm{s}}{2}\right) \cdot 7 \mathrm{~s}$
10) Distance Travelled in n Seconds
$f_{\mathrm{x}} \mathrm{d}=\mathrm{n} \cdot \mathrm{u}+\frac{1}{2} \cdot \mathrm{a} \cdot \mathrm{n}^{2}$
ex $164 \mathrm{~m}=(4 \mathrm{~s}) \cdot 31 \mathrm{~m} / \mathrm{s}+\frac{1}{2} \cdot 5 \mathrm{~m} / \mathrm{s}^{2} \cdot(4 \mathrm{~s})^{2}$
11) Distance Travelled in $n-1$ Seconds
$f \mathrm{f} d=\mathrm{u} \cdot(\mathrm{n}-1)+\frac{1}{2} \cdot \mathrm{a} \cdot(\mathrm{n}-1)^{2}$
Open Calculator
ex $115.5 \mathrm{~m}=31 \mathrm{~m} / \mathrm{s} \cdot(4 \mathrm{~s}-1)+\frac{1}{2} \cdot 5 \mathrm{~m} / \mathrm{s}^{2} \cdot(4 \mathrm{~s}-1)^{2}$
12) Distance Travelled in nth Second
$f \mathrm{f} d=\mathrm{u}+\frac{\mathrm{a}}{2} \cdot(2 \cdot \mathrm{n}-1)$
Open Calculator
ex $48.5 \mathrm{~m}=31 \mathrm{~m} / \mathrm{s}+\frac{5 \mathrm{~m} / \mathrm{s}^{2}}{2} \cdot(2 \cdot 4 \mathrm{~s}-1)$
13) Final Velocity given Displacement, Uniform Acceleration and Initial Velocity of Particle
$f x v_{f}=\sqrt{u^{2}+2 \cdot a \cdot d}$
ex $44 \mathrm{~m} / \mathrm{s}=\sqrt{(31 \mathrm{~m} / \mathrm{s})^{2}+2 \cdot 5 \mathrm{~m} / \mathrm{s}^{2} \cdot 97.5 \mathrm{~m}}$
14) Initial Velocity given Displacement, Uniform Acceleration and Final Velocity of Particle
$f \mathrm{x} u=\sqrt{\mathrm{v}_{\mathrm{f}}^{2}-2 \cdot \mathrm{a} \cdot \mathrm{d}}$
Open Calculator
ex $31 \mathrm{~m} / \mathrm{s}=\sqrt{(44 \mathrm{~m} / \mathrm{s})^{2}-2 \cdot 5 \mathrm{~m} / \mathrm{s}^{2} \cdot 97.5 \mathrm{~m}}$
15) Time Taken by Particle to Change its Initial Velocity to Final Velocity
$f \mathrm{x} t=\frac{\mathrm{v}_{\mathrm{f}}-\mathrm{u}}{\mathrm{a}}$
$\operatorname{ex} 2.6 \mathrm{~s}=\frac{44 \mathrm{~m} / \mathrm{s}-31 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~m} / \mathrm{s}^{2}}$
16) Velocity of Particle after Certain Time
$f \mathrm{x} v=\mathrm{u}+\mathrm{a} \cdot \mathrm{t}$
ex $66 \mathrm{~m} / \mathrm{s}=31 \mathrm{~m} / \mathrm{s}+5 \mathrm{~m} / \mathrm{s}^{2} \cdot 7 \mathrm{~s}$

Variables Used

- a Acceleration (Meter per Square Second)
- d Displacement (Meter)
- D Distance Traveled (Meter)
- \mathbf{n} Number of Seconds (Second)
- t Time (Second)
- u Initial Velocity (Meter per Second)
- V Velocity (Meter per Second)
- $\mathbf{v}_{\text {avg }}$ Average Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{f}}$ Final Velocity (Meter per Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second² Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion

Check other formula lists

- Curvilinear motion Formulas \mathcal{L}
- Dynamics Formulas
- Friction Formulas
- Laws of Motion Formulas
- Lifting Machines Formulas
- Linear Motion Formulas
- Motion of Connected Bodies Formulas \longleftarrow
- Projectiles Formulas
- Properties of Surfaces and Solids Formulas \longleftarrow
- Statics of Particles Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/5/2023 | 7:36:36 AM UTC
Please leave your feedback here...

