

Notches and Weirs Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

Open Calculator

Open Calculator 🚰

Open Calculator 2

List of 27 Notches and Weirs Formulas

Notches and Weirs

Discharge 2

1) Coefficient of Discharge for Time Required to Empty Reservoir

$$\boxed{\text{fx}} C_d = \frac{3 \cdot A}{t_{total} \cdot L_{weir} \cdot \sqrt{2 \cdot [g]}} \cdot \left(\frac{1}{\sqrt{H_f}} - \frac{1}{\sqrt{H_i}}\right)$$

$$extbf{K}Q = 1.705 \cdot ext{C}_{ ext{d}} \cdot ext{L}_{ ext{weir}} \cdot ext{H}^{rac{3}{2}}$$

 $oxed{ex} \left[52.1915 \mathrm{m}^3 / \mathrm{s} = 1.705 \cdot 0.8 \cdot 1.21 \mathrm{m} \cdot (10 \mathrm{m})^{rac{3}{2}}
ight]$

3) Discharge over Broad-Crested Weir for Head of Liquid at Middle

$$ag{Q} = C_{
m d} \cdot L_{
m weir} \cdot \sqrt{2 \cdot [
m g] \cdot \left(
m h^2 \cdot H -
m h^3
ight)}$$

 $\boxed{ 38.58275 \text{m}^3/\text{s} = 0.8 \cdot 1.21 \text{m} \cdot \sqrt{2 \cdot [\text{g}] \cdot \left(\left(9 \text{m}\right)^2 \cdot 10 \text{m} - \left(9 \text{m}\right)^3 \right) } }$

4) Discharge over Broad-Crested Weir with Velocity of Approach

$$ag{Q} = 1.705 \cdot \mathrm{C_d} \cdot \mathrm{L_{weir}} \cdot \left((\mathrm{H} + \mathrm{h_a})^{rac{3}{2}} - \mathrm{h_a^{rac{3}{2}}}
ight)$$

 $ext{ex} \left[59.69284 ext{m}^3/ ext{s} = 1.705 \cdot 0.8 \cdot 1.21 ext{m} \cdot \left((10 ext{m} + 1.2 ext{m})^{rac{3}{2}} - (1.2 ext{m})^{rac{3}{2}}
ight)
ight]$

5) Discharge over Rectangle Notch or Weir

$$extbf{K}Q_{ ext{th}} = rac{2}{3} \cdot ext{C}_{ ext{d}} \cdot ext{L}_{ ext{weir}} \cdot \sqrt{2 \cdot [ext{g}]} \cdot ext{H}^{rac{3}{2}}$$

Open Calculator

6) Discharge over Rectangle Weir Considering Bazin's formula

$$Q = \left(0.405 + rac{0.003}{H}
ight) \cdot L_{weir} \cdot \sqrt{2 \cdot [g]} \cdot H^{rac{3}{2}}$$

Open Calculator

7) Discharge over Rectangle Weir Considering Francis's formula

$$extbf{Q}' = 1.84 \cdot L_{weir} \cdot \left(\left(H_i + H_f
ight)^{rac{3}{2}} - H_f^{rac{3}{2}}
ight)$$

Open Calculator

$$\boxed{ \text{ex} \left[5659.859 \text{m}^3/\text{s} = 1.84 \cdot 1.21 \text{m} \cdot \left((186.1 \text{m} + 0.17 \text{m})^{\frac{3}{2}} - (0.17 \text{m})^{\frac{3}{2}} \right) \right] }$$

8) Discharge over Rectangle Weir for Bazin's formula with Velocity of Approach

$$ext{Q} = \left(0.405 + rac{0.003}{ ext{H} + ext{h}_{ ext{a}}}
ight) \cdot ext{L}_{ ext{weir}} \cdot \sqrt{2 \cdot ext{[g]}} \cdot (ext{H} + ext{h}_{ ext{a}})^{rac{3}{2}}$$

Open Calculator

$$\boxed{\texttt{ex} \left[81.40103 \text{m}^3/\text{s} = \left(0.405 + \frac{0.003}{10 \text{m} + 1.2 \text{m}}\right) \cdot 1.21 \text{m} \cdot \sqrt{2 \cdot [\text{g}]} \cdot (10 \text{m} + 1.2 \text{m})^{\frac{3}{2}}\right]}$$

9) Discharge over Rectangle Weir with Two End Contractions

$$extstyle Q = rac{2}{3} \cdot ext{C}_{ ext{d}} \cdot (ext{L}_{ ext{weir}} - 0.2 \cdot ext{H}) \cdot \sqrt{2 \cdot [ext{g}]} \cdot ext{H}^{rac{3}{2}}$$

Open Calculator

$$= 2 -59.006677 \text{m}^3/\text{s} = \frac{2}{3} \cdot 0.8 \cdot (1.21 \text{m} - 0.2 \cdot 10 \text{m}) \cdot \sqrt{2 \cdot [\text{g}]} \cdot (10 \text{m})^{\frac{3}{2}}$$

10) Discharge over Trapezoidal Notch or Weir

Open Calculator

Open Calculator 2

Open Calculator

Open Calculator

$$\overline{\mathrm{Q}_{\mathrm{th}} = rac{2}{3} \cdot \mathrm{C}_{\mathrm{d1}} \cdot \mathrm{L}_{\mathrm{weir}} \cdot \sqrt{2 \cdot [\mathrm{g}]} \cdot \mathrm{H}^{rac{3}{2}} + rac{8}{15} \cdot \mathrm{C}_{\mathrm{d2}} \cdot \mathrm{tan}igg(rac{\angle \mathrm{A}}{2}igg) \cdot \sqrt{2 \cdot [\mathrm{g}]} \cdot \mathrm{H}^{rac{5}{2}}}$$

ex

$$\boxed{201.2609 \text{m}^3/\text{s} = \frac{2}{3} \cdot 0.63 \cdot 1.21 \text{m} \cdot \sqrt{2 \cdot [\text{g}]} \cdot (10 \text{m})^{\frac{3}{2}} + \frac{8}{15} \cdot 0.65 \cdot \tan \left(\frac{30°}{2}\right) \cdot \sqrt{2 \cdot [\text{g}]} \cdot (10 \text{m})^{\frac{5}{2}}}$$

11) Discharge over Triangular Notch or Weir

 $\mathbf{Q}_{\mathrm{th}} = rac{8}{15} \cdot \mathrm{C_d} \cdot \mathrm{tan} igg(rac{\angle \mathrm{A}}{2}igg) \cdot \sqrt{2 \cdot [\mathrm{g}]} \cdot \mathrm{H}^{rac{5}{2}}$

ex $160.1093 \text{m}^3/\text{s} = \frac{8}{15} \cdot 0.8 \cdot \tan\left(\frac{30^{\circ}}{2}\right) \cdot \sqrt{2 \cdot [\text{g}]} \cdot (10 \text{m})^{\frac{5}{2}}$

12) Discharge with Velocity of Approach

fx $\mathrm{Q'} = rac{2}{2} \cdot \mathrm{C_d} \cdot \mathrm{L_{weir}} \cdot \sqrt{2 \cdot \mathrm{[g]}} \cdot \left((\mathrm{H_i} + \mathrm{H_f})^{rac{3}{2}} - \mathrm{H_f^{rac{3}{2}}}
ight)$

13) Discharge without Velocity of Approach

fx $ext{Q'} = rac{2}{2} \cdot ext{C}_{ ext{d}} \cdot ext{L}_{ ext{weir}} \cdot \sqrt{2 \cdot [ext{g}]} \cdot ext{H}_{ ext{i}}^{rac{3}{2}}$

 $7255.695 ext{m}^3/ ext{s} = rac{2}{3} \cdot 0.8 \cdot 1.21 ext{m} \cdot \sqrt{2 \cdot ext{[g]}} \cdot (186.1 ext{m})^{rac{3}{2}}$

14) Head of Liquid above V-notch

 $\mathbf{H} = \begin{pmatrix} \mathbf{Q}_{\text{th}} \\ \frac{8}{4\pi} \cdot \mathbf{C}_{\text{d}} \cdot \tan\left(\frac{\angle \mathbf{A}}{2}\right) \cdot \sqrt{2 \cdot [g]} \end{pmatrix}$

ex 7.94201m = $\left(\frac{90$ m³/s}{\frac{8}{32} \cdot 0.8 \cdot \tan\left(\frac{30}{3}\right) \cdot \sqrt{2 \cdot \lceil \sigma \rceil}}\right)^{0.4}

© calculatoratoz.com. A softusvista inc. venture!

15) Head of Liquid at Crest

 $\mathbf{H} = \left(rac{Q_{th}}{rac{2}{3} \cdot C_d \cdot L_{weir} \cdot \sqrt{2 \cdot [g]}}
ight)^{rac{2}{3}}$

Open Calculator

$$= 2.972148 \text{m} = \left(\frac{90 \text{m}^3/\text{s}}{\frac{2}{3} \cdot 0.8 \cdot 1.21 \text{m} \cdot \sqrt{2 \cdot [\text{g}]}} \right)^{\frac{2}{3}}$$

16) Time Required to Empty Reservoir

 $\boxed{\mathbf{fx}} \left| t_{total} = \left(\frac{3 \cdot A}{C_d \cdot L_{weir} \cdot \sqrt{2 \cdot [g]}} \right) \cdot \left(\frac{1}{\sqrt{H_f}} - \frac{1}{\sqrt{H_i}} \right) \right|$

Open Calculator

$$82.29767s = \left(\frac{3 \cdot 50m^2}{0.8 \cdot 1.21m \cdot \sqrt{2 \cdot [g]}}\right) \cdot \left(\frac{1}{\sqrt{0.17m}} - \frac{1}{\sqrt{186.1m}}\right)$$

17) Time Required to Empty Tank with Triangular Weir or Notch

 $\mathbf{f}_{\mathrm{total}} = \left(rac{5 \cdot \mathrm{A}}{4 \cdot \mathrm{C_d} \cdot \mathrm{tan}\left(rac{\angle \mathrm{A}}{2}
ight) \cdot \sqrt{2 \cdot [\mathrm{g}]}}
ight) \cdot \left(rac{1}{\mathrm{H_{\mathrm{f}}}^{rac{3}{2}}} - rac{1}{\mathrm{H_{\mathrm{i}}}^{rac{3}{2}}}
ight)$

Open Calculator

$$\boxed{ \mathbf{ex} } 939.2406 \mathbf{s} = \left(\frac{5 \cdot 50 \mathbf{m}^2}{4 \cdot 0.8 \cdot \tan \left(\frac{30^*}{2} \right) \cdot \sqrt{2 \cdot [\mathbf{g}]}} \right) \cdot \left(\frac{1}{\left(0.17 \mathbf{m} \right)^{\frac{3}{2}}} - \frac{1}{\left(186.1 \mathbf{m} \right)^{\frac{3}{2}}} \right)$$

Geometric Dimension

18) Length of Crest of Weir or Notch 🗗

Open Calculator

$$\boxed{ 1.244752 \text{m} = \frac{3 \cdot 50 \text{m}^2}{0.8 \cdot 80 \text{s} \cdot \sqrt{2 \cdot [\text{g}]}} \cdot \left(\frac{1}{\sqrt{0.17 \text{m}}} - \frac{1}{\sqrt{186.1 \text{m}}} \right) }$$

19) Length of Section for Discharge over Rectangle Notch or Weir 🚰

 $\mathbf{f}_{\mathbf{k}} \mathrm{L}_{\mathrm{weir}} = rac{\mathrm{Q}_{\mathrm{th}}}{rac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot [\mathrm{g}]} \cdot \mathrm{l}_{\mathrm{Arc}}^{rac{3}{2}}}$

Open Calculator

$$ex 0.655891m = \frac{90m^3/s}{\frac{2}{3} \cdot 0.8 \cdot \sqrt{2 \cdot [g]} \cdot (15m)^{\frac{3}{2}} }$$

20) Length of Weir Considering Bazin's formula with Velocity of Approach

 $\boxed{\text{L}_{notch} = \frac{Q}{0.405 + \frac{0.003}{l_{Arc} + h_a}} \cdot \sqrt{2 \cdot [g]} \cdot (l_{Arc} + h_a)^{\frac{3}{2}}} }$

Open Calculator

$$\boxed{ \textbf{ex} 28507.18 \text{m} = \frac{40 \text{m}^3/\text{s}}{0.405 + \frac{0.003}{15 \text{m} + 1.2 \text{m}}} \cdot \sqrt{2 \cdot [\text{g}]} \cdot (15 \text{m} + 1.2 \text{m})^{\frac{3}{2}} } }$$

21) Length of Weir Considering Bazin's formula without Velocity of Approach

 $\mathbf{E} \mathbf{L}_{\mathrm{notch}} = rac{\mathrm{Q}}{0.405 + rac{0.003}{\mathrm{l}_{\mathrm{Arc}}}} \cdot \sqrt{2 \cdot [\mathrm{g}]} \cdot l_{\mathrm{Arc}}^{rac{3}{2}}$

Open Calculator

22) Length of Weir Considering Francis's formula

 $extbf{L}_{ ext{weir}} = rac{ ext{Q}}{1.84 \cdot \left((ext{H}_{ ext{i}} + ext{h}_{ ext{a}})^{rac{3}{2}} - ext{h}_{ ext{a}}^{rac{3}{2}}
ight)}$

Open Calculator

$$= \frac{40 \text{m}^3/\text{s}}{1.84 \cdot \left((186.1 \text{m} + 1.2 \text{m})^{\frac{3}{2}} - (1.2 \text{m})^{\frac{3}{2}} \right)}$$

23) Length of Weir for Broad-Crested Weir and Head of Liquid at Middle 🗗

 $egin{aligned} \mathbf{K} egin{aligned} \mathbf{L}_{
m weir} &= rac{\mathrm{Q}}{\mathrm{C_d} \cdot \sqrt{2 \cdot [\mathrm{g}] \cdot \left(\mathrm{h}^2 \cdot \mathrm{l}_{
m Arc} - \mathrm{h}^3
ight)}} \end{aligned} \end{aligned}$

Open Calculator

$$= \frac{40 \text{m}^3/\text{s}}{0.8 \cdot \sqrt{2 \cdot [\text{g}] \cdot \left((9\text{m})^2 \cdot 15\text{m} - (9\text{m})^3 \right)} }$$

24) Length of Weir for Broad-Crested Weir with Velocity of Approach

 $\mathrm{L_{weir}} = rac{\mathrm{Q}}{1.705\cdot\mathrm{C_d}\cdot\left(\left(l_{Arc}+h_a
ight)^{rac{3}{2}}-h_a^{rac{3}{2}}
ight)}$

Open Calculator

$$= \frac{40 \text{m}^3/\text{s}}{1.705 \cdot 0.8 \cdot \left((15 \text{m} + 1.2 \text{m})^{\frac{3}{2}} - (1.2 \text{m})^{\frac{3}{2}} \right) }$$

25) Length of Weir for Discharge over Broad-Crested Weir

 $\mathbf{f_{k}} = rac{oldsymbol{arphi}}{1.705 \cdot \mathrm{C_d} \cdot \mathrm{l}_{\mathrm{Arc}}^{rac{3}{2}}}$

Open Calculator

$= \frac{40 \text{m}^3/\text{s}}{1.705 \cdot 0.8 \cdot (15 \text{m})^{\frac{3}{2}}}$

26) Length of Weir or Notch for Velocity of Approach

 $\mathbf{E} \mathbf{L}_{\mathrm{weir}} = rac{\mathbf{Q}}{rac{2}{3}\cdot \mathbf{C}_{\mathrm{d}}\cdot \sqrt{2\cdot [\mathrm{g}]}\cdot \left(\left(\mathbf{H}_{\mathrm{i}}+\mathbf{H}_{\mathrm{f}}
ight)^{rac{3}{2}}-\mathbf{H}_{\mathrm{f}}^{rac{3}{2}}
ight)}$

Open Calculator 🗗

$$= \frac{40 \text{m}^3/\text{s}}{\frac{2}{3} \cdot 0.8 \cdot \sqrt{2 \cdot [\text{g}]} \cdot \left((186.1 \text{m} + 0.17 \text{m})^{\frac{3}{2}} - (0.17 \text{m})^{\frac{3}{2}} \right) }$$

27) Length of Weir or Notch without Velocity of Approach

Open Calculator 🗗

$$\mathbf{L}_{weir} = rac{Q}{rac{2}{3} \cdot C_d \cdot \sqrt{2 \cdot [g]} \cdot H_i^{rac{3}{2}}}$$

Variables Used

- ∠A Angle A (Degree)
- A Area of Weir (Square Meter)
- Cd Coefficient of Discharge
- C_{d1} Coefficient of Discharge Rectangular
- Cd2 Coefficient of Discharge Triangular
- **h** Head of Liquid Middle (Meter)
- **H** Head of Liquid (Meter)
- ha Head due to Velocity of Approach (Meter)
- **H**_f Final Height of Liquid (Meter)
- Hi Initial Height of Liquid (Meter)
- IArc Arc Length of Circle (Meter)
- Lnotch Length of Notches (Meter)
- Lweir Length of Weir (Meter)
- Q Discharge Weir (Cubic Meter per Second)
- Q' Discharge (Cubic Meter per Second)
- Qth Theoretical Discharge (Cubic Meter per Second)
- t_{total} Total Time Taken (Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second²
 Gravitational acceleration on Earth
- Function: **sqrt**, sqrt(Number)
 Square root function
- Function: tan, tan(Angle)

 Trigonometric tangent function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion

Check other formula lists

Notches and Weirs Formulas

Orifices and Mouthpieces Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/8/2024 | 10:36:12 AM UTC

Please leave your feedback here...

