Notches and Weirs Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 27 Notches and Weirs Formulas

Notches and Weirs

Discharge

1) Coefficient of Discharge for Time Required to Empty Reservoir
$f \times \mathrm{C}_{\mathrm{d}}=\frac{3 \cdot \mathrm{~A}}{\mathrm{t}_{\mathrm{a}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot[\mathrm{~g}]}} \cdot\left(\frac{1}{\sqrt{\mathrm{H}_{\mathrm{f}}}}-\frac{1}{\sqrt{\mathrm{H}_{\mathrm{i}}}}\right)$
$\mathbf{e x} 0.822977=\frac{3 \cdot 50 \mathrm{~m}^{2}}{80 \mathrm{~s} \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]}} \cdot\left(\frac{1}{\sqrt{0.17 \mathrm{~m}}}-\frac{1}{\sqrt{186.1 \mathrm{~m}}}\right)$
2) Discharge over Broad-Crested Weir
f. $\mathrm{Q}=1.705 \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \mathrm{H}^{\frac{3}{2}}$
ex $52.1915 \mathrm{~m}^{3} / \mathrm{s}=1.705 \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot(10 \mathrm{~m})^{\frac{3}{2}}$
3) Discharge over Broad-Crested Weir for Head of Liquid at Middle
$f \mathrm{x} Q=\mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot[\mathrm{~g}] \cdot\left(\mathrm{h}^{2} \cdot \mathrm{H}-\mathrm{h}^{3}\right)}$
Open Calculator
ex $38.58275 \mathrm{~m}^{3} / \mathrm{s}=0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}] \cdot\left((9 \mathrm{~m})^{2} \cdot 10 \mathrm{~m}-(9 \mathrm{~m})^{3}\right)}$
4) Discharge over Broad-Crested Weir with Velocity of Approach
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{Q}}=1.705 \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot\left(\left(\mathrm{H}+\mathrm{h}_{\mathrm{a}}\right)^{\frac{3}{2}}-\mathrm{h}_{\mathrm{a}}^{\frac{3}{2}}\right)$
ex $59.69284 \mathrm{~m}^{3} / \mathrm{s}=1.705 \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot\left((10 \mathrm{~m}+1.2 \mathrm{~m})^{\frac{3}{2}}-(1.2 \mathrm{~m})^{\frac{3}{2}}\right)$
5) Discharge over Rectangle Notch or Weir
fx $\mathrm{Q}_{\mathrm{th}}=\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{3}{2}}$
ex $90.37731 \mathrm{~m}^{3} / \mathrm{s}=\frac{2}{3} \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{3}{2}}$
6) Discharge over Rectangle Weir Considering Bazin's formula
$f \times \mathrm{Q}=\left(0.405+\frac{0.003}{\mathrm{H}}\right) \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{3}{2}}$
Open Calculator
ex $68.68111 \mathrm{~m}^{3} / \mathrm{s}=\left(0.405+\frac{0.003}{10 \mathrm{~m}}\right) \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{3}{2}}$
7) Discharge over Rectangle Weir Considering Francis's formula
$f \mathrm{fx} \mathrm{Q}^{\prime}=1.84 \cdot \mathrm{~L}_{\mathrm{w}} \cdot\left(\left(\mathrm{H}_{\mathrm{i}}+\mathrm{H}_{\mathrm{f}}\right)^{\frac{3}{2}}-\mathrm{H}_{\mathrm{f}}^{\frac{3}{2}}\right)$
Open Calculator
ex $5659.859 \mathrm{~m}^{3} / \mathrm{s}=1.84 \cdot 1.21 \mathrm{~m} \cdot\left((186.1 \mathrm{~m}+0.17 \mathrm{~m})^{\frac{3}{2}}-(0.17 \mathrm{~m})^{\frac{3}{2}}\right)$
8) Discharge over Rectangle Weir for Bazin's formula with Velocity of Approach
$f \times \mathrm{Q}=\left(0.405+\frac{0.003}{\mathrm{H}+\mathrm{h}_{\mathrm{a}}}\right) \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left(\mathrm{H}+\mathrm{h}_{\mathrm{a}}\right)^{\frac{3}{2}}$
Open Calculator
ex $81.40103 \mathrm{~m}^{3} / \mathrm{s}=\left(0.405+\frac{0.003}{10 \mathrm{~m}+1.2 \mathrm{~m}}\right) \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m}+1.2 \mathrm{~m})^{\frac{3}{2}}$
9) Discharge over Rectangle Weir with Two End Contractions
$\mathrm{fx} \mathrm{Q}=\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot\left(\mathrm{L}_{\mathrm{w}}-0.2 \cdot \mathrm{H}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{3}{2}}$
ex $-59.006677 \mathrm{~m}^{3} / \mathrm{s}=\frac{2}{3} \cdot 0.8 \cdot(1.21 \mathrm{~m}-0.2 \cdot 10 \mathrm{~m}) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{3}{2}}$
10) Discharge over Trapezoidal Notch or Weir \preceq
$f x$
$\mathrm{Q}_{\mathrm{th}}=\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d} 1} \cdot \mathrm{~L}_{\mathrm{w}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{3}{2}}+\frac{8}{15} \cdot \mathrm{C}_{\mathrm{d} 2} \cdot \tan \left(\frac{\angle \mathrm{~A}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{5}{2}}$
ex
$201.2609 \mathrm{~m}^{3} / \mathrm{s}=\frac{2}{3} \cdot 0.63 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{3}{2}}+\frac{8}{15} \cdot 0.65 \cdot \tan \left(\frac{30^{\circ}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{5}{2}}$
11) Discharge over Triangular Notch or Weir
$\mathrm{fx} \mathrm{Q}_{\mathrm{th}}=\frac{8}{15} \cdot \mathrm{C}_{\mathrm{d}} \cdot \tan \left(\frac{\angle \mathrm{A}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{5}{2}}$
ex $160.1093 \mathrm{~m}^{3} / \mathrm{s}=\frac{8}{15} \cdot 0.8 \cdot \tan \left(\frac{30^{\circ}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{5}{2}}$
12) Discharge with Velocity of Approach
$f \times Q^{\prime}=\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left(\left(\mathrm{H}_{\mathrm{i}}+\mathrm{H}_{\mathrm{f}}\right)^{\frac{3}{2}}-\mathrm{H}_{\mathrm{f}}^{\frac{3}{2}}\right)$
Open Calculator
ex $7265.439 \mathrm{~m}^{3} / \mathrm{s}=\frac{2}{3} \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left((186.1 \mathrm{~m}+0.17 \mathrm{~m})^{\frac{3}{2}}-(0.17 \mathrm{~m})^{\frac{3}{2}}\right)$
13) Discharge without Velocity of Approach

凹

$f \mathrm{x} \mathrm{Q}^{\prime}=\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}_{\mathrm{i}}^{\frac{3}{2}}$
ex $7255.695 \mathrm{~m}^{3} / \mathrm{s}=\frac{2}{3} \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(186.1 \mathrm{~m})^{\frac{3}{2}}$
14) Head of Liquid above V-notch
$f x H=\left(\frac{Q_{t h}}{\frac{8}{15} \cdot C_{d} \cdot \tan \left(\frac{\angle A}{2}\right) \cdot \sqrt{2 \cdot[g]}}\right)^{0.4}$
ex $7.94201 \mathrm{~m}=\left(\frac{90 \mathrm{~m}^{3} / \mathrm{s}}{\frac{8}{15} \cdot 0.8 \cdot \tan \left(\frac{30^{\circ}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right)^{0.4}$
15) Head of Liquid at Crest
$f_{\mathrm{x}} \mathrm{H}=\left(\frac{\mathrm{Q}_{\mathrm{th}}}{\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right)^{\frac{2}{3}}$
$\mathrm{ex} 9.972148 \mathrm{~m}=\left(\frac{90 \mathrm{~m}^{3} / \mathrm{s}}{\frac{2}{3} \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right)^{\frac{2}{3}}$
16) Time Required to Empty Reservoir
$f x \mathrm{t}_{\mathrm{a}}=\left(\frac{3 \cdot \mathrm{~A}}{\mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right) \cdot\left(\frac{1}{\sqrt{\mathrm{H}_{\mathrm{f}}}}-\frac{1}{\sqrt{\mathrm{H}_{\mathrm{i}}}}\right)$
ex $82.29767 \mathrm{~s}=\left(\frac{3 \cdot 50 \mathrm{~m}^{2}}{0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right) \cdot\left(\frac{1}{\sqrt{0.17 \mathrm{~m}}}-\frac{1}{\sqrt{186.1 \mathrm{~m}}}\right)$
17) Time Required to Empty Tank with Triangular Weir or Notch
$f \mathrm{f} \mathrm{t}_{\mathrm{a}}=\left(\frac{5 \cdot \mathrm{~A}}{4 \cdot \mathrm{C}_{\mathrm{d}} \cdot \tan \left(\frac{\angle \mathrm{A}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right) \cdot\left(\frac{1}{\mathrm{H}_{\mathrm{f}}^{\frac{3}{2}}}-\frac{1}{\mathrm{H}_{\mathrm{i}}^{\frac{3}{2}}}\right)$
ex $939.2406 \mathrm{~s}=\left(\frac{5 \cdot 50 \mathrm{~m}^{2}}{4 \cdot 0.8 \cdot \tan \left(\frac{30^{\circ}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right) \cdot\left(\frac{1}{(0.17 \mathrm{~m})^{\frac{3}{2}}}-\frac{1}{(186.1 \mathrm{~m})^{\frac{3}{2}}}\right)$

Geometric DImension

18) Length of Crest of Weir or Notch
$f \mathrm{f} \mathrm{L}_{\mathrm{w}}=\frac{3 \cdot \mathrm{~A}}{\mathrm{C}_{\mathrm{d}} \cdot \mathrm{t}_{\mathrm{a}} \cdot \sqrt{2 \cdot[\mathrm{~g}]}} \cdot\left(\frac{1}{\sqrt{\mathrm{H}_{\mathrm{f}}}}-\frac{1}{\sqrt{\mathrm{H}_{\mathrm{i}}}}\right)$
ex $1.244752 \mathrm{~m}=\frac{3 \cdot 50 \mathrm{~m}^{2}}{0.8 \cdot 80 \mathrm{~s} \cdot \sqrt{2 \cdot[\mathrm{~g}]}} \cdot\left(\frac{1}{\sqrt{0.17 \mathrm{~m}}}-\frac{1}{\sqrt{186.1 \mathrm{~m}}}\right)$
19) Length of Section for Discharge over Rectangle Notch or Weir
$f_{\mathrm{x}} \mathrm{L}_{\mathrm{w}}=\frac{\mathrm{Q}_{\mathrm{th}}}{\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot 1_{\mathrm{a}}^{\frac{3}{2}}}$
ex $0.655891 \mathrm{~m}=\frac{90 \mathrm{~m}^{3} / \mathrm{s}}{\frac{2}{3} \cdot 0.8 \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(15 \mathrm{~m})^{\frac{3}{2}}}$
20) Length of Weir Considering Bazin's formula with Velocity of Approach
$f \mathbf{x} L_{\mathrm{n}}=\frac{\mathrm{Q}}{0.405+\frac{0.003}{1_{\mathrm{a}}+\mathrm{h}_{\mathrm{a}}}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left(\mathrm{l}_{\mathrm{a}}+\mathrm{h}_{\mathrm{a}}\right)^{\frac{3}{2}}$
ex $28507.18 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{0.405+\frac{0.003}{15 \mathrm{~m}+1.2 \mathrm{~m}}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(15 \mathrm{~m}+1.2 \mathrm{~m})^{\frac{3}{2}}$
21) Length of Weir Considering Bazin's formula without Velocity of Approach
$\mathrm{fx} \mathrm{L}_{\mathrm{n}}=\frac{\mathrm{Q}}{0.405+\frac{0.003}{1_{\mathrm{a}}}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot l_{\mathrm{a}}^{\frac{3}{2}}$
ex $25398.19 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{0.405+\frac{0.003}{15 \mathrm{~m}}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(15 \mathrm{~m})^{\frac{3}{2}}$
22) Length of Weir Considering Francis's formula
$f \mathbf{x} \mathrm{~L}_{\mathrm{w}}=\frac{\mathrm{Q}}{1.84 \cdot\left(\left(\mathrm{H}_{\mathrm{i}}+\mathrm{h}_{\mathrm{a}}\right)^{\frac{3}{2}}-\mathrm{h}_{\mathrm{a}}^{\frac{3}{2}}\right)}$
ex $0.008485 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{1.84 \cdot\left((186.1 \mathrm{~m}+1.2 \mathrm{~m})^{\frac{3}{2}}-(1.2 \mathrm{~m})^{\frac{3}{2}}\right)}$
23) Length of Weir for Broad-Crested Weir and Head of Liquid at Middle
$f \mathrm{x} \mathrm{L}_{\mathrm{w}}=\frac{\mathrm{Q}}{\mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot[g] \cdot\left(\mathrm{h}^{2} \cdot l_{\mathrm{a}}-\mathrm{h}^{3}\right)}}$
ex $0.512126 \mathrm{~m}=$
$\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{0.8 \cdot \sqrt{2 \cdot[\mathrm{~g}] \cdot\left((9 \mathrm{~m})^{2} \cdot 15 \mathrm{~m}-(9 \mathrm{~m})^{3}\right)}}$
24) Length of Weir for Broad-Crested Weir with Velocity of Approach
$\mathrm{fx} \mathrm{L}_{\mathrm{w}}=\frac{\mathrm{Q}}{1.705 \cdot \mathrm{C}_{\mathrm{d}} \cdot\left(\left(\mathrm{l}_{\mathrm{a}}+\mathrm{h}_{\mathrm{a}}\right)^{\frac{3}{2}}-\mathrm{h}_{\mathrm{a}}^{\frac{3}{2}}\right)}$
ex $0.459006 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{1.705 \cdot 0.8 \cdot\left((15 \mathrm{~m}+1.2 \mathrm{~m})^{\frac{3}{2}}-(1.2 \mathrm{~m})^{\frac{3}{2}}\right)}$
25) Length of Weir for Discharge over Broad-Crested Weir
$\mathrm{fx} \mathrm{L}_{\mathrm{w}}=\frac{\mathrm{Q}}{1.705 \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{l}_{\mathrm{a}}^{\frac{3}{2}}}$
ex $0.504788 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{1.705 \cdot 0.8 \cdot(15 \mathrm{~m})^{\frac{3}{2}}}$
26) Length of Weir or Notch for Velocity of Approach
$f \mathbf{x} \mathrm{~L}_{\mathrm{w}}=\frac{\mathrm{Q}}{\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left(\left(\mathrm{H}_{\mathrm{i}}+\mathrm{H}_{\mathrm{f}}\right)^{\frac{3}{2}}-\mathrm{H}_{\mathrm{f}}^{\frac{3}{2}}\right)}$
ex $0.006662 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{\frac{2}{3} \cdot 0.8 \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left((186.1 \mathrm{~m}+0.17 \mathrm{~m})^{\frac{3}{2}}-(0.17 \mathrm{~m})^{\frac{3}{2}}\right)}$
27) Length of Weir or Notch without Velocity of Approach
$f \times L_{\mathrm{w}}=\frac{\mathrm{Q}}{\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot[g]} \cdot \mathrm{H}_{\mathrm{i}}^{\frac{3}{2}}}$
ex $0.006671 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{\frac{2}{3} \cdot 0.8 \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(186.1 \mathrm{~m})^{\frac{3}{2}}}$

Variables Used

- $\angle A$ Angle A (Degree)
- A Area of Weir (Square Meter)
- C $_{\mathrm{d}}$ Coefficient of Discharge
- $\mathrm{C}_{\mathrm{d} 1}$ Coefficient of Discharge Rectangular
- $\mathrm{C}_{\mathrm{d} 2}$ Coefficient of Discharge Triangular
- h Head of Liquid Middle (Meter)
- H Head of Liquid (Meter)
- $\mathbf{h}_{\mathbf{a}}$ Head Due to Velocity of Approach (Meter)
- $\mathbf{H}_{\mathbf{f}}$ Final Height of Liquid (Meter)
- $\mathbf{H}_{\mathbf{i}}$ Initial Height of Liquid (Meter)
- Ia Arc Length of Circle (Meter)
- L_{n} Length of Notches (Meter)
- L_{w} Length of Weir (Meter)
- Q Discharge Weir (Cubic Meter per Second)
- Q' Discharge (Cubic Meter per Second)
- \mathbf{Q}_{th} Theoretical Discharge (Cubic Meter per Second)
- $\mathbf{t}_{\mathbf{a}}$ Total Time Taken (Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: $\boldsymbol{t a n}, \tan ($ Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$)

Volumetric Flow Rate Unit Conversion

Check other formula lists

- Notches and Weirs Formulas
- Orifices and Mouthpieces Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

