Intacche e sbarramenti Formule

Segnalibro calculatoratoz.com, unitsconverters.com

La più ampia copertura di calcolatrici e in crescita - 30.000+ calcolatrici! Calcola con un'unità diversa per ogni variabile - Nella conversione di unità costruita! La più ampia raccolta di misure e unità - $250+$ misurazioni!

Sentiti libero di CONDIVIDERE questo documento con i tuoi amici!

Si prega di lasciare il tuo feedback qui...

Lista di 27 Intacche e sbarramenti Formule

Intacche e sbarramenti

Scarico

1) Coefficiente di scarico per il tempo necessario per svuotare il serbatoio
$\mathrm{fx} \mathrm{C}_{\mathrm{d}}=\frac{3 \cdot \mathrm{~A}}{\mathrm{t}_{\text {total }} \cdot \mathrm{L}_{\text {weir }} \cdot \sqrt{2 \cdot[\mathrm{~g}]}} \cdot\left(\frac{1}{\sqrt{\mathrm{H}_{\mathrm{f}}}}-\frac{1}{\sqrt{\mathrm{H}_{\mathrm{i}}}}\right)$
Apri Calcolatrice
ex $0.822977=\frac{3 \cdot 50 \mathrm{~m}^{2}}{80 \mathrm{~s} \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]}} \cdot\left(\frac{1}{\sqrt{0.17 \mathrm{~m}}}-\frac{1}{\sqrt{186.1 \mathrm{~m}}}\right)$

Apri Calcolatrice
2) Scarica con velocità di avvicinamento
fx $\mathrm{Q}^{\prime}=\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\text {weir }} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left(\left(\mathrm{H}_{\mathrm{i}}+\mathrm{H}_{\mathrm{f}}\right)^{\frac{3}{2}}-\mathrm{H}_{\mathrm{f}}^{\frac{3}{2}}\right)$
ex $7265.439 \mathrm{~m}^{3} / \mathrm{s}=\frac{2}{3} \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left((186.1 \mathrm{~m}+0.17 \mathrm{~m})^{\frac{3}{2}}-(0.17 \mathrm{~m})^{\frac{3}{2}}\right)$
3) Scarica senza velocità di avvicinamento
fx $\mathrm{Q}^{\prime}=\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\text {weir }} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}_{\mathrm{i}}^{\frac{3}{2}}$
Apri Calcolatrice
ex $7255.695 \mathrm{~m}^{3} / \mathrm{s}=\frac{2}{3} \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(186.1 \mathrm{~m})^{\frac{3}{2}}$
4) Scarica su Rectangle Notch o Weir
$f x \mathrm{Q}_{\text {th }}=\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\text {weir }} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{3}{2}}$
ex $90.37731 \mathrm{~m}^{3} / \mathrm{s}=\frac{2}{3} \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{3}{2}}$
5) Scarica su Rectangle Weir con due contrazioni finali
$\mathrm{fx} \mathrm{Q}=\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot\left(\mathrm{L}_{\text {weir }}-0.2 \cdot \mathrm{H}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{3}{2}}$
ex $-59.006677 \mathrm{~m}^{3} / \mathrm{s}=\frac{2}{3} \cdot 0.8 \cdot(1.21 \mathrm{~m}-0.2 \cdot 10 \mathrm{~m}) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{3}{2}}$
6) Scarica su Rectangle Weir per la formula di Bazin con Velocity of Approach
$f \times \mathrm{Q}=\left(0.405+\frac{0.003}{\mathrm{H}+\mathrm{h}_{\mathrm{a}}}\right) \cdot \mathrm{L}_{\text {weir }} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left(\mathrm{H}+\mathrm{h}_{\mathrm{a}}\right)^{\frac{3}{2}}$
ex $81.40103 \mathrm{~m}^{3} / \mathrm{s}=\left(0.405+\frac{0.003}{10 \mathrm{~m}+1.2 \mathrm{~m}}\right) \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m}+1.2 \mathrm{~m})^{\frac{3}{2}}$
7) Scarico su Broad-Crested Weir $\underbrace{〔}$
$f \times \mathrm{Q}=1.705 \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\text {weir }} \cdot \mathrm{H}^{\frac{3}{2}}$
ex $52.1915 \mathrm{~m}^{3} / \mathrm{s}=1.705 \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot(10 \mathrm{~m})^{\frac{3}{2}}$
8) Scarico su Rectangle Weir Considerando la formula di Bazin \simeq
$f \mathrm{f} \mathrm{Q}=\left(0.405+\frac{0.003}{\mathrm{H}}\right) \cdot \mathrm{L}_{\text {weir }} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{3}{2}}$
ex $68.68111 \mathrm{~m}^{3} / \mathrm{s}=\left(0.405+\frac{0.003}{10 \mathrm{~m}}\right) \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{3}{2}}$
9) Scarico su Rectangle Weir Considerando la formula di Francis
$f \times Q^{\prime}=1.84 \cdot \mathrm{~L}_{\text {weir }} \cdot\left(\left(\mathrm{H}_{\mathrm{i}}+\mathrm{H}_{\mathrm{f}}\right)^{\frac{3}{2}}-\mathrm{H}_{\mathrm{f}}^{\frac{3}{2}}\right)$
ex $5659.859 \mathrm{~m}^{3} / \mathrm{s}=1.84 \cdot 1.21 \mathrm{~m} \cdot\left((186.1 \mathrm{~m}+0.17 \mathrm{~m})^{\frac{3}{2}}-(0.17 \mathrm{~m})^{\frac{3}{2}}\right)$
10) Scarico su sbarramento a cresta larga con velocità di avvicinamento
$f \mathrm{f} Q=1.705 \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\text {weir }} \cdot\left(\left(\mathrm{H}+\mathrm{h}_{\mathrm{a}}\right)^{\frac{3}{2}}-\mathrm{h}_{\mathrm{a}}^{\frac{3}{2}}\right)$
Apri Calcolatrice
ex $59.69284 \mathrm{~m}^{3} / \mathrm{s}=1.705 \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot\left((10 \mathrm{~m}+1.2 \mathrm{~m})^{\frac{3}{2}}-(1.2 \mathrm{~m})^{\frac{3}{2}}\right)$
11) Scarico su sbarramento a cresta larga per Head of Liquid at Middle
$f \mathrm{f} \mathrm{Q}=\mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\text {weir }} \cdot \sqrt{2 \cdot[\mathrm{~g}] \cdot\left(\mathrm{h}^{2} \cdot \mathrm{H}-\mathrm{h}^{3}\right)}$
Apri Calcolatrice
ex $38.58275 \mathrm{~m}^{3} / \mathrm{s}=0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}] \cdot\left((9 \mathrm{~m})^{2} \cdot 10 \mathrm{~m}-(9 \mathrm{~m})^{3}\right)}$
12) Scarico su tacca trapezoidale o sbarramento
$f x$
Apri Calcolatrice ©
$\mathrm{Q}_{\text {th }}=\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d} 1} \cdot \mathrm{~L}_{\text {weir }} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{3}{2}}+\frac{8}{15} \cdot \mathrm{C}_{\mathrm{d} 2} \cdot \tan \left(\frac{\angle \mathrm{~A}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{5}{2}}$
ex
$201.2609 \mathrm{~m}^{3} / \mathrm{s}=\frac{2}{3} \cdot 0.63 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{3}{2}}+\frac{8}{15} \cdot 0.65 \cdot \tan \left(\frac{30^{\circ}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{5}{2}}$
13) Scarico su tacca triangolare o sbarramento
$f \mathrm{f} \mathrm{Q}_{\mathrm{th}}=\frac{8}{15} \cdot \mathrm{C}_{\mathrm{d}} \cdot \tan \left(\frac{\angle \mathrm{A}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot \mathrm{H}^{\frac{5}{2}}$
ex $160.1093 \mathrm{~m}^{3} / \mathrm{s}=\frac{8}{15} \cdot 0.8 \cdot \tan \left(\frac{30^{\circ}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(10 \mathrm{~m})^{\frac{5}{2}}$
14) Tempo necessario per svuotare il serbatoio
fx $\mathrm{t}_{\text {total }}=\left(\frac{3 \cdot \mathrm{~A}}{\mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\text {weir }} \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right) \cdot\left(\frac{1}{\sqrt{\mathrm{H}_{\mathrm{f}}}}-\frac{1}{\sqrt{\mathrm{H}_{\mathrm{i}}}}\right)$
ex $82.29767 \mathrm{~s}=\left(\frac{3 \cdot 50 \mathrm{~m}^{2}}{0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right) \cdot\left(\frac{1}{\sqrt{0.17 \mathrm{~m}}}-\frac{1}{\sqrt{186.1 \mathrm{~m}}}\right)$
15) Tempo necessario per svuotare il serbatoio con sbarramento triangolare otacca
$f x \mathrm{t}_{\text {total }}=\left(\frac{5 \cdot \mathrm{~A}}{4 \cdot \mathrm{C}_{\mathrm{d}} \cdot \tan \left(\frac{\angle \mathrm{A}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right) \cdot\left(\frac{1}{\mathrm{H}_{\mathrm{f}}^{\frac{3}{2}}}-\frac{1}{\mathrm{H}_{\mathrm{i}}^{\frac{3}{2}}}\right)$
$\operatorname{ex} 939.2406 \mathrm{~s}=\left(\frac{5 \cdot 50 \mathrm{~m}^{2}}{4 \cdot 0.8 \cdot \tan \left(\frac{30^{\circ}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right) \cdot\left(\frac{1}{(0.17 \mathrm{~m})^{\frac{3}{2}}}-\frac{1}{(186.1 \mathrm{~m})^{\frac{3}{2}}}\right)$
16) Testa del liquido sopra l'intaglio a
$f \mathbf{f x} H=\left(\frac{\mathrm{Q}_{\mathrm{th}}}{\frac{8}{15} \cdot \mathrm{C}_{\mathrm{d}} \cdot \tan \left(\frac{\angle \mathrm{A}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right)^{0.4}$
ex $7.94201 \mathrm{~m}=\left(\frac{90 \mathrm{~m}^{3} / \mathrm{s}}{\frac{8}{15} \cdot 0.8 \cdot \tan \left(\frac{30^{\circ}}{2}\right) \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right)^{0.4}$
17) Testa di Liquid a Crest
$f \mathbf{f x}=\left(\frac{Q_{\text {th }}}{\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot L_{\text {weir }} \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right)^{\frac{2}{3}}$
$\operatorname{ex} 9.972148 \mathrm{~m}=\left(\frac{90 \mathrm{~m}^{3} / \mathrm{s}}{\frac{2}{3} \cdot 0.8 \cdot 1.21 \mathrm{~m} \cdot \sqrt{2 \cdot[\mathrm{~g}]}}\right)^{\frac{2}{3}}$

Dimensione geometrica

18) Lunghezza della cresta dello sbarramento o della tacca
$f \times L_{\text {weir }}=\frac{3 \cdot \mathrm{~A}}{\mathrm{C}_{\mathrm{d}} \cdot \mathrm{t}_{\text {total }} \cdot \sqrt{2 \cdot[\mathrm{~g}]}} \cdot\left(\frac{1}{\sqrt{\mathrm{H}_{\mathrm{f}}}}-\frac{1}{\sqrt{\mathrm{H}_{\mathrm{i}}}}\right)$
ex $1.244752 \mathrm{~m}=\frac{3 \cdot 50 \mathrm{~m}^{2}}{0.8 \cdot 80 \mathrm{~s} \cdot \sqrt{2 \cdot[\mathrm{~g}]}} \cdot\left(\frac{1}{\sqrt{0.17 \mathrm{~m}}}-\frac{1}{\sqrt{186.1 \mathrm{~m}}}\right)$
19) Lunghezza della sezione per lo scarico su tacca rettangolare o stramazzo
$f \mathbf{x} L_{\text {weir }}=\frac{Q_{\text {th }}}{\frac{2}{3} \cdot C_{d} \cdot \sqrt{2 \cdot[g]} \cdot 1_{\text {Arc }}^{\frac{3}{2}}}$
Apri Calcolatrice
ex $0.655891 \mathrm{~m}=\frac{90 \mathrm{~m}^{3} / \mathrm{s}}{\frac{2}{3} \cdot 0.8 \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(15 \mathrm{~m})^{\frac{3}{2}}}$
20) Lunghezza dello sbarramento Considerando la formula di Bazin con la velocità di avvicinamento E
$f \times \mathrm{L}_{\mathrm{notch}}=\frac{\mathrm{Q}}{0.405+\frac{0.003}{1_{\mathrm{Arc}}+\mathrm{h}_{\mathrm{a}}}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left(\mathrm{l}_{\mathrm{Arc}}+\mathrm{h}_{\mathrm{a}}\right)^{\frac{3}{2}}$
ex $28507.18 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{0.405+\frac{0.003}{15 \mathrm{~m}+1.2 \mathrm{~m}}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(15 \mathrm{~m}+1.2 \mathrm{~m})^{\frac{3}{2}}$
21) Lunghezza dello sbarramento Considerando la formula di Bazin senza velocità di avvicinamento E
$\mathrm{fx} \mathrm{L}_{\text {notch }}=\frac{\mathrm{Q}}{0.405+\frac{0.003}{1_{\mathrm{Arc}}}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot 1_{\mathrm{Arc}}^{\frac{3}{2}}$
22) Lunghezza dello sbarramento Considerando la formula di Francis
$f \times L_{\text {weir }}=\frac{\mathrm{Q}}{1.84 \cdot\left(\left(\mathrm{H}_{\mathrm{i}}+\mathrm{h}_{\mathrm{a}}\right)^{\frac{3}{2}}-\mathrm{h}_{\mathrm{a}}^{\frac{3}{2}}\right)}$
ex $0.008485 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{1.84 \cdot\left((186.1 \mathrm{~m}+1.2 \mathrm{~m})^{\frac{3}{2}}-(1.2 \mathrm{~m})^{\frac{3}{2}}\right)}$
23) Lunghezza dello sbarramento o tacca per la velocità di avvicinamento
$f \times L_{\text {weir }}=\frac{Q}{\frac{2}{3} \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left(\left(\mathrm{H}_{\mathrm{i}}+\mathrm{H}_{\mathrm{f}}\right)^{\frac{3}{2}}-\mathrm{H}_{\mathrm{f}}^{\frac{3}{2}}\right)}$
ex $0.006662 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{\frac{2}{3} \cdot 0.8 \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot\left((186.1 \mathrm{~m}+0.17 \mathrm{~m})^{\frac{3}{2}}-(0.17 \mathrm{~m})^{\frac{3}{2}}\right)}$
24) Lunghezza dello sbarramento o tacca senza velocità di avvicinamento
$f \times L_{\text {weir }}=\frac{Q}{\frac{2}{3} \cdot C_{d} \cdot \sqrt{2 \cdot[g]} \cdot H_{i}^{\frac{3}{2}}}$
ex $0.006671 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{\frac{2}{3} \cdot 0.8 \cdot \sqrt{2 \cdot[\mathrm{~g}]} \cdot(186.1 \mathrm{~m})^{\frac{3}{2}}}$
25) Lunghezza dello sbarramento per lo sbarramento a cresta larga e testa del liquido al centro
$f \times L_{\text {weir }}=\frac{Q}{C_{d} \cdot \sqrt{2 \cdot[g] \cdot\left(h^{2} \cdot l_{\text {Arc }}-h^{3}\right)}}$
ex $0.512126 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{0.8 \cdot \sqrt{2 \cdot[\mathrm{~g}] \cdot\left((9 \mathrm{~m})^{2} \cdot 15 \mathrm{~m}-(9 \mathrm{~m})^{3}\right)}}$
26) Lunghezza dello sbarramento per lo scarico su uno sbarramento a cresta larga
$f \mathrm{fx} \mathrm{L}_{\text {weir }}=\frac{\mathrm{Q}}{1.705 \cdot \mathrm{C}_{\mathrm{d}} \cdot 1_{\text {Arc }}^{\frac{3}{2}}}$
ex $0.504788 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{1.705 \cdot 0.8 \cdot(15 \mathrm{~m})^{\frac{3}{2}}}$
27) Lunghezza dello sbarramento per sbarramento a cresta larga con velocità di avvicinamento

ex $0.459006 \mathrm{~m}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}}{1.705 \cdot 0.8 \cdot\left((15 \mathrm{~m}+1.2 \mathrm{~m})^{\frac{3}{2}}-(1.2 \mathrm{~m})^{\frac{3}{2}}\right)}$

Variabili utilizzate

- $\angle A$ Angolo A (Grado)
- A Zona di Weir (Metro quadrato)
- \mathbf{C}_{d} Coefficiente di scarico
- $\mathrm{C}_{\mathrm{d} 1}$ Coefficiente di portata Rettangolare
- $\mathbf{C}_{\mathrm{d} 2}$ Coefficiente di scarica triangolare
- \mathbf{h} Responsabile del settore Liquid Middle (metro)
- H Responsabile Liquidi (metro)
- $\mathbf{h}_{\mathbf{a}}$ Testa dovuta alla velocità di avvicinamento (metro)
- H_{f} Altezza finale del liquido (metro)
- $\mathbf{H}_{\mathbf{i}}$ Altezza iniziale del liquido (metro)
- IArc Lunghezza dell'arco del cerchio (metro)
- Lnotch Lunghezza delle tacche (metro)
- $\mathrm{L}_{\text {weir }}$ Lunghezza dello sbarramento (metro)
- Q Stramazzo di scarico (Metro cubo al secondo)
- Q' Scarico (Metro cubo al secondo)
- $\mathbf{Q}_{\text {th }}$ Scarico teorico (Metro cubo al secondo)
- $t_{\text {total }}$ Tempo totale impiegato (Secondo)

Costanti, Funzioni, Misure utilizzate

- Costante: [g], 9.80665 Meter/Second²

Gravitational acceleration on Earth

- Funzione: sqrt, sqrt(Number)

Square root function

- Funzione: $\boldsymbol{t a n}, \tan ($ Angle)

Trigonometric tangent function

- Misurazione: Lunghezza in metro (m)

Lunghezza Conversione unità

- Misurazione: Tempo in Secondo (s)

Tempo Conversione unità

- Misurazione: La zona in Metro quadrato (m^{2})

La zona Conversione unità

- Misurazione: Angolo in Grado $\left({ }^{\circ}\right)$

Angolo Conversione unità

- Misurazione: Portata volumetrica in Metro cubo al secondo ($\mathrm{m}^{3} / \mathrm{s}$)

Portata volumetrica Conversione unità

Controlla altri elenchi di formule

- Intacche e sbarramenti Formule
- Orifizi e bocchini Formule

Sentiti libero di CONDIVIDERE questo documento con i tuoi amici!

PDF Disponibile in

English Spanish French German Russian Italian Portuguese Polish Dutch

