
calculatoratoz.com

unitsconverters.com

Hydrolysis for Weak Acid and Weak Base Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Hydrolysis for Weak Acid and Weak Base Formulas

Hydrolysis for Weak Acid and Weak Base ©

1) Acid Ionization Constant of Weak Acid $\boxed{\Omega}$
$f \mathrm{f} \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{h}}}$
Open Calculator
ex $2 \mathrm{E}^{\wedge}-5=\frac{1.0 \mathrm{E}^{\wedge}-14}{5 \mathrm{E}^{\wedge}-10}$
2) Basic Ionization Constant of Weak Base
$f \times K_{b}=\frac{K_{w}}{K_{\mathrm{h}}}$
Open Calculator
ex $2 \mathrm{E}^{\wedge}-5=\frac{1.0 \mathrm{E}^{\wedge}-14}{5 \mathrm{E}^{\wedge}-10}$
3) Concentration of Hydronium ion in Salt of Weak Acid and Weak Base
$f \mathrm{E} C=\sqrt{\mathrm{K}_{\mathrm{w}} \cdot \frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{K}_{\mathrm{b}}}}$
Open Calculator
ex $1.1 \mathrm{E}^{\wedge}-10 \mathrm{~mol} / \mathrm{L}=\sqrt{1.0 \mathrm{E}^{\wedge}-14 \cdot \frac{2.0 \mathrm{E}^{\wedge}-5}{1.77 \mathrm{E}^{\wedge}-5}}$
4) Constant of Hydrolysis given Ionic Product of Water and Acid Ionization Constant of Weak Acid
f. $\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}$

Open Calculator
ex $5 \mathrm{E}^{\wedge}-10=\frac{1.0 \mathrm{E}^{\wedge}-14}{2.0 \mathrm{E}^{\wedge}-5}$
5) Constant of Hydrolysis given Ionic Product of Water and Basic Ionization Constant of Weak Base
$f \mathrm{x} \mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}$
Open Calculator
ex $5.6 \mathrm{E}^{\wedge}-10=\frac{1.0 \mathrm{E}^{\wedge}-14}{1.77 \mathrm{E}^{\wedge}-5}$
6) Degree of Hydrolysis in Salt of Weak Acid and Weak Base

ex $0.12669=\sqrt{\frac{1.0 \mathrm{E}^{\wedge}-14}{1.76 \mathrm{E}^{\wedge}-6 \mathrm{~mol} / \mathrm{L} \cdot 2.0 \mathrm{E}^{\wedge}-5 \cdot 1.77 \mathrm{E}^{\wedge}-5}}$
7) Hydrolysis Constant in Weak Acid and Weak Base
$f \mathbf{x} \mathrm{~K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}} \cdot \mathrm{K}_{\mathrm{b}}}$
Open Calculator
ex $2.8 \mathrm{E}^{\wedge}-5=\frac{1.0 \mathrm{E}^{\wedge}-14}{2.0 \mathrm{E}^{\wedge}-5 \cdot 1.77 \mathrm{E}^{\wedge}-5}$
8) Ionic Product of Water given Constant of Hydrolysis and Acid Ionization Constant of Weak Acid
$\mathrm{fx} \mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \cdot \mathrm{K}_{\mathrm{h}}$
Open Calculator
ex $1 \mathrm{E}^{\wedge}-14=2.0 \mathrm{E}^{\wedge}-5 \cdot 5 \mathrm{E}^{\wedge}-10$
9) Ionic Product of Water given Constant of Hydrolysis and Basic Ionization Constant of Weak Base
$\mathrm{fx} \mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{K}_{\mathrm{h}}$
Open Calculator
ex $8.9 \mathrm{E}^{\wedge}-15=1.77 \mathrm{E}^{\wedge}-5 \cdot 5 \mathrm{E}^{\wedge}-10$
10) pH of Salt of Weak Acid and Weak base
$\mathrm{fx} \mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{w}}+\mathrm{pk}_{\mathrm{a}}-\mathrm{pk}_{\mathrm{b}}}{2}$
Open Calculator
ex $6=\frac{14+4-6}{2}$
11) pKa of Salt of Weak Acid and Weak base
$f \mathrm{fx} \mathrm{pk}_{\mathrm{a}}=2 \cdot \mathrm{pH}-14+\mathrm{pk}_{\mathrm{b}}$
ex $4=2 \cdot 6-14+6$
12) pKb of Salt of Weak Acid and Weak base
$\mathrm{fx} \mathrm{pk}_{\mathrm{b}}=-2 \cdot \mathrm{pH}+14+\mathrm{pk}_{\mathrm{a}}$
ex $6=-2 \cdot 6+14+4$
13) pOH of Salt of Weak Acid and Weak Base
$f \mathrm{x} \mathrm{pOH}=14-\frac{\mathrm{pK}_{\mathrm{w}}+\mathrm{pk}_{\mathrm{a}}-\mathrm{pk}_{\mathrm{b}}}{2}$
Open Calculator
ex $8=14-\frac{14+4-6}{2}$

Variables Used

- C Hydronium Ion Concentration (Mole per Liter)
- $\mathbf{C}_{\text {salt }}$ Concentration of Salt (Mole per Liter)
- \mathbf{h} Degree of Hydrolysis
- $\mathbf{K}_{\mathbf{a}}$ Constant of Ionization of Acids
- $\mathbf{K}_{\mathbf{b}}$ Constant Of Ionization Of Bases
- $\mathbf{K}_{\mathbf{h}}$ Constant Of Hydrolysis
- $\mathbf{K}_{\mathbf{w}}$ Ionic Product of Water
- pH Negative Log of Hydronium Concentration
- $\mathbf{p k}_{\mathbf{a}}$ Negative Log of Acid Ionization Constant
- $\mathbf{p k}_{\mathbf{b}}$ Negative Log of Base Ionization Constant
- $\mathrm{pK}_{\mathbf{w}}$ Negative Log of Ionic Product of Water
- pOH Negative Log of Hydroxyl Concentration

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Molar Concentration in Mole per Liter (mol/L) Molar Concentration Unit Conversion

Check other formula lists

- Cationic and Anionic Salt Hydrolysis Formulas \mathcal{L}
- Hydrolysis for Weak Acid and Weak Base Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

