
calculatoratoz.com

Relative Strength of Two Acids Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Relative Strength of Two Acids Formulas

Relative Strength of Two Acids ©

1) Concentration of Acid 1 given Relative Strength, Conc of Acid 2 and Degree of Diss of both Acids

$$
\begin{aligned}
& f_{\mathrm{x}} \mathrm{C}_{1}=\frac{\mathrm{R}_{\text {strength }} \cdot \mathrm{C}_{2} \cdot \alpha_{2}}{\alpha_{1}} \\
& \mathrm{ex} 10 \mathrm{~mol} / \mathrm{L}=\frac{2 \cdot 20 \mathrm{~mol} / \mathrm{L} \cdot 0.125}{0.5}
\end{aligned}
$$

2) Concentration of Acid 1 given Relative Strength, Conc of Acid 2 and Diss const of both Acids
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}^{\prime}{ }_{1}=\frac{\left(\mathrm{R}_{\text {strength }}^{2}\right) \cdot \mathrm{C}_{2} \cdot \mathrm{~K}_{\mathrm{a} 2}}{\mathrm{~K}_{\mathrm{a} 1}}$

3) Concentration of Acid 2 given Relative Strength, Conc of Acid 1 and Degree of Diss of both Acids
$\mathrm{fx} \mathrm{C}_{2}=\frac{\mathrm{C}_{1} \cdot \alpha_{1}}{R_{\text {strength }} \cdot \alpha_{2}}$
Open Calculator
ex $20 \mathrm{~mol} / \mathrm{L}=\frac{10 \mathrm{~mol} / \mathrm{L} \cdot 0.5}{2 \cdot 0.125}$
4) Concentration of Acid 2 given Relative Strength, Conc of Acid 1 and Diss Const of both Acids
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{2}=\frac{\mathrm{C}^{\prime}{ }_{1} \cdot \mathrm{~K}_{\mathrm{a} 1}}{\left(\mathrm{R}_{\text {strength }}^{2}\right) \cdot \mathrm{K}_{\mathrm{a} 2}}$
Open Calculator
$\mathrm{ex} 20 \mathrm{~mol} / \mathrm{L}=\frac{0.0024 \mathrm{~mol} / \mathrm{L} \cdot 1.5 \mathrm{E}^{\wedge}-5}{\left((2)^{2}\right) \cdot 4.5 \mathrm{E}^{\wedge}-10}$
5) Concentration of Hydrogen Ion of Acid 1 given Relative Strength and Conc of Hydrogen Ion of Acid $2 \boxed{\Omega}$
$\mathrm{fx}\left(\mathrm{H}_{+} 1\right)=\mathrm{R}_{\text {strength }} \cdot\left(\mathrm{H}^{+} 2\right)$
ex $5 \mathrm{~mol} / \mathrm{L}=2 \cdot 2.5 \mathrm{~mol} / \mathrm{L}$
6) Concentration of Hydrogen Ion of Acid 2 given Relative Strength and Conc of Hydrogen Ion of Acid $1 \boxed{\Omega}$
$f \times\left(\mathrm{H}^{+} 2\right)=\frac{\mathrm{H}_{+} 1}{\mathrm{R}_{\text {strength }}}$

Open Calculator
ex $2.5 \mathrm{~mol} / \mathrm{L}=\frac{5 \mathrm{~mol} / \mathrm{L}}{2}$
7) Degree of Dissociation 1 given Relative Strength, Conc of both Acid and Degree of Diss $2 \sqrt{ }$
$\mathrm{fx}_{\mathrm{x}} \alpha_{1}=\frac{\mathrm{R}_{\text {strength }} \cdot \mathrm{C}_{2} \cdot \alpha_{2}}{\mathrm{C}_{1}}$
Open Calculator
ex $0.5=\frac{2 \cdot 20 \mathrm{~mol} / \mathrm{L} \cdot 0.125}{10 \mathrm{~mol} / \mathrm{L}}$
8) Degree of Dissociation 2 given Relative Strength, Conc of both Acid and Degree of Diss $1 \boxed{J}$
$\mathbf{f x} \boldsymbol{\alpha}_{2}=\frac{\mathrm{C}_{1} \cdot \alpha_{1}}{\mathrm{R}_{\text {strength }} \cdot \mathrm{C}_{2}}$
Open Calculator
ex $0.125=\frac{10 \mathrm{~mol} / \mathrm{L} \cdot 0.5}{2 \cdot 20 \mathrm{~mol} / \mathrm{L}}$
9) Dissociation Constant 1 given Relative Strength, Conc of both Acid and Diss Const $2 \square$
$f \mathrm{fx} \mathrm{K}_{\mathrm{a} 1}=\frac{\left(\mathrm{R}_{\text {strength }}^{2}\right) \cdot \mathrm{C}_{2} \cdot \mathrm{~K}_{\mathrm{a} 2}}{\mathrm{C}^{\prime}{ }_{1}}$
Open Calculator
$\operatorname{ex} 1.5 \mathrm{E}^{\wedge}-5=\frac{\left((2)^{2}\right) \cdot 20 \mathrm{~mol} / \mathrm{L} \cdot 4.5 \mathrm{E}^{\wedge}-10}{0.0024 \mathrm{~mol} / \mathrm{L}}$
10) Dissociation Constant 2 given Relative Strength, Conc of both Acid and Diss Const 1 W

$$
\begin{aligned}
& f \mathbf{f x} \mathrm{~K}_{\mathrm{a} 2}=\frac{\mathrm{C}^{\prime}{ }_{1} \cdot \mathrm{~K}_{\mathrm{a} 1}}{\left(\mathrm{R}_{\text {strength }}^{2}\right) \cdot \mathrm{C}_{2}} \\
& \mathbf{e x} 4.5 \mathrm{E}^{\wedge}-10=\frac{0.0024 \mathrm{~mol} / \mathrm{L} \cdot 1.5 \mathrm{E}^{\wedge}-5}{\left((2)^{2}\right) \cdot 20 \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

Open Calculator
11) Relative Strength of Two Acids given Concentration and Degree of Dissociations of both Acids
$\mathrm{fx}_{\mathrm{x}} \mathrm{R}_{\text {strength }}=\frac{\mathrm{C}_{1} \cdot \alpha_{1}}{\mathrm{C}_{2} \cdot \alpha_{2}}$
Open Calculator
ex $2=\frac{10 \mathrm{~mol} / \mathrm{L} \cdot 0.5}{20 \mathrm{~mol} / \mathrm{L} \cdot 0.125}$
12) Relative Strength of Two Acids given Concentration and Dissociation Constant of both Acids

$f \mathrm{f} \mathrm{R}_{\text {strength }}=\sqrt{\frac{\mathrm{C}_{1}^{\prime} \cdot \mathrm{K}_{\mathrm{a} 1}}{\mathrm{C}_{2} \cdot \mathrm{~K}_{\mathrm{a} 2}}}$
$\mathrm{ex} 2=\sqrt{\frac{0.0024 \mathrm{~mol} / \mathrm{L} \cdot 1.5 \mathrm{E}^{\wedge}-5}{20 \mathrm{~mol} / \mathrm{L} \cdot 4.5 \mathrm{E}^{\wedge}-10}}$
13) Relative Strength of Two Acids given Concentration of Hydrogen Ion of both Acids
$f \times \mathrm{R}_{\text {strength }}=\frac{\mathrm{H}_{+} 1}{\mathrm{H}^{+} 2}$
ex $2=\frac{5 \mathrm{~mol} / \mathrm{L}}{2.5 \mathrm{~mol} / \mathrm{L}}$

Variables Used

- \mathbf{C}_{1} Concentration of Acid 1 (Mole per Liter)
- $\mathrm{C}^{\prime}{ }_{1}$ Conc. of Acid 1 given Dissociation Constant (Mole per Liter)
- \mathbf{C}_{2} Concentration of Acid 2 (Mole per Liter)
- $\mathrm{H}_{+} 1$ Hydrogen Ion Furnished by Acid 1 (Mole per Liter)
- $\mathrm{H}^{+} 2$ Hydrogen Ion Furnished by Acid 2 (Mole per Liter)
- K \mathbf{a}_{1} Dissociation Constant of Weak Acid 1
- $\mathrm{K}_{\mathrm{a} 2}$ Dissociation Constant of Weak Acid 2
- $\mathbf{R}_{\text {strength }}$ Relative Strength of Two Acids
- α_{1} Degree of Dissociation 1
- α_{2} Degree of Dissociation 2

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Molar Concentration in Mole per Liter (mol/L) Molar Concentration Unit Conversion

Check other formula lists

- Acidity and pH Scale Formulas © Ostwald Dilution Law
- Buffer Solution Formulas Formulas $\sqrt{\boxed{Z}}$
- Relative Strength of Two Acids Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

