

Relative Strength of Two Acids Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Relative Strength of Two Acids Formulas

Relative Strength of Two Acids

1) Concentration of Acid 1 given Relative Strength, Conc of Acid 2 and Degree of Diss of both Acids

$$\mathbf{K} \mathbf{C}_1 = rac{\mathrm{R}_{\mathrm{strength}} \cdot \mathrm{C}_2 \cdot \mathbf{lpha}_2}{\mathbf{lpha}_1}$$

Open Calculator

$$\boxed{10 \text{mol/L} = \frac{2 \cdot 20 \text{mol/L} \cdot 0.125}{0.5}}$$

2) Concentration of Acid 1 given Relative Strength, Conc of Acid 2 and Diss const of both Acids

$$extbf{C'}_1 = rac{\left(ext{R}_{ ext{strength}}^2
ight) \cdot ext{C}_2 \cdot ext{K}_{ ext{a2}}}{ ext{K}_{ ext{a1}}}$$

Open Calculator

$$oxed{ex} 0.0024 \mathrm{mol/L} = rac{\left(\left(2
ight)^2
ight) \cdot 20 \mathrm{mol/L} \cdot 4.5 \mathrm{E^-10}}{1.5 \mathrm{E^-5}}$$

3) Concentration of Acid 2 given Relative Strength, Conc of Acid 1 and Degree of Diss of both Acids

Open Calculator 🗗

$$\boxed{\text{ex}} \ 20 \text{mol/L} = \frac{10 \text{mol/L} \cdot 0.5}{2 \cdot 0.125}$$

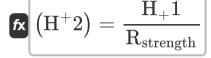
4) Concentration of Acid 2 given Relative Strength, Conc of Acid 1 and Diss Const of both Acids

$$\mathbf{K} \mathbf{C}_2 = rac{\mathbf{C'}_1 \cdot \mathbf{K}_{\mathrm{a}1}}{\left(\mathbf{R}_{\mathrm{strength}}^2
ight) \cdot \mathbf{K}_{\mathrm{a}2}}$$

Open Calculator

$$extbf{ex} 20 ext{mol/L} = rac{0.0024 ext{mol/L} \cdot 1.5 ext{E}^--5}{\left((2)^2
ight) \cdot 4.5 ext{E}^--10}$$

5) Concentration of Hydrogen Ion of Acid 1 given Relative Strength and Conc of Hydrogen Ion of Acid 2


$$ag{K} ig(\mathrm{H}_{+} 1) = \mathrm{R}_{\mathrm{strength}} \cdot ig(\mathrm{H}^{+} 2 ig) ig)$$

Open Calculator G

$$extstyle extstyle ext$$

6) Concentration of Hydrogen Ion of Acid 2 given Relative Strength and Conc of Hydrogen Ion of Acid 1

Open Calculator 🚰

$$oxed{ex} 2.5 \mathrm{mol/L} = rac{5 \mathrm{mol/L}}{2}$$

7) Degree of Dissociation 1 given Relative Strength, Conc of both Acid and Degree of Diss 2

$$oldsymbol{lpha}_1 = rac{\mathrm{R_{strength}} \cdot \mathrm{C}_2 \cdot oldsymbol{lpha}_2}{\mathrm{C}_1}$$

Open Calculator

$$oxed{ex} 0.5 = rac{2 \cdot 20 \mathrm{mol/L} \cdot 0.125}{10 \mathrm{mol/L}}$$

8) Degree of Dissociation 2 given Relative Strength, Conc of both Acid and Degree of Diss 1

$$oldsymbol{lpha}_2 = rac{\mathrm{C}_1 \cdot oldsymbol{lpha}_1}{\mathrm{R}_{\mathrm{strength}} \cdot \mathrm{C}_2}$$

Open Calculator 🗗

$$extbf{ex} 0.125 = rac{10 ext{mol/L} \cdot 0.5}{2 \cdot 20 ext{mol/L}}$$

9) Dissociation Constant 1 given Relative Strength, Conc of both Acid and Diss Const 2

 $\mathbf{K}_{\mathrm{a1}} = rac{\left(\mathrm{R_{\mathrm{strength}}^{2}}\right)\cdot\mathrm{C_{2}\cdot\mathrm{K_{a2}}}}{\mathrm{C'_{1}}}$

Open Calculator 🗗

 $oxed{1.5 ext{E^--5} = rac{\left({{{\left(2
ight)}^2}}
ight) \cdot 20 ext{mol/L} \cdot 4.5 ext{E^--10}}{0.0024 ext{mol/L}}}$

10) Dissociation Constant 2 given Relative Strength, Conc of both Acid and Diss Const 1

 $\left| \mathbf{K}_{\mathrm{a2}}
ight| = rac{\mathrm{C'}_1 \cdot \mathrm{K}_{\mathrm{a1}}}{\left(\mathrm{R}_{\mathrm{strength}}^2
ight) \cdot \mathrm{C}_2}$

Open Calculator

ex $4.5\text{E}^-10 = \frac{0.0024 \text{mol/L} \cdot 1.5\text{E}^-5}{\left(\left(2\right)^2\right) \cdot 20 \text{mol/L}}$

11) Relative Strength of Two Acids given Concentration and Degree of Dissociations of both Acids

 $\mathbf{R}_{ ext{strength}} = rac{\mathrm{C}_1 \cdot \mathbf{lpha}_1}{\mathrm{C}_2 \cdot \mathbf{lpha}_2}$

Open Calculator

$$\mathbf{ex} = rac{10 \mathrm{mol/L} \cdot 0.5}{20 \mathrm{mol/L} \cdot 0.125}$$

12) Relative Strength of Two Acids given Concentration and Dissociation Constant of both Acids

 $oxed{\mathbf{R}} \mathbf{R}_{\mathrm{strength}} = \sqrt{rac{\mathbf{C'}_1 \cdot \mathbf{K}_{\mathrm{a}1}}{\mathbf{C}_2 \cdot \mathbf{K}_{\mathrm{a}2}}}$

Open Calculator 🗗

$$\mathbf{ex} \ 2 = \sqrt{rac{0.0024 ext{mol/L} \cdot 1.5 ext{E}^{2} - 5}{20 ext{mol/L} \cdot 4.5 ext{E}^{2} - 10}}$$

13) Relative Strength of Two Acids given Concentration of Hydrogen Ion of both Acids

$$m R_{strength} = rac{H_+ 1}{H^+ 2}$$

Open Calculator

$$2 = rac{5 ext{mol/L}}{2.5 ext{mol/L}}$$

Variables Used

- C₁ Concentration of Acid 1 (Mole per Liter)
- C'1 Conc. of Acid 1 given Dissociation Constant (Mole per Liter)
- C₂ Concentration of Acid 2 (Mole per Liter)
- H₊1 Hydrogen Ion Furnished by Acid 1 (Mole per Liter)
- H⁺2 Hydrogen Ion Furnished by Acid 2 (Mole per Liter)
- K_{a1} Dissociation Constant of Weak Acid 1
- K_{a2} Dissociation Constant of Weak Acid 2
- R_{strength} Relative Strength of Two Acids
- α₁ Degree of Dissociation 1
- α₂ Degree of Dissociation 2

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Molar Concentration in Mole per Liter (mol/L)

 Molar Concentration Unit Conversion

Check other formula lists

- Acidity and pH Scale Formulas Ostwald Dilution Law
- Buffer Solution Formulas
- Formulas 🚰
- Relative Strength of Two Acids Formulas (

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/1/2024 | 8:39:33 AM UTC

Please leave your feedback here...

