

Laminar Flow between Parallel Plates, both plates at rest Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 30 Laminar Flow between Parallel Plates, both plates at rest Formulas

Laminar Flow between Parallel Plates, both plates at rest 🚰

4) Distance between Plates given Maximum Velocity between Plates 🕑

fx
$$w = \sqrt{\frac{8 \cdot \mu \cdot V_{max}}{dp|dr}}$$

ex $2.987976m = \sqrt{\frac{8 \cdot 10.2P \cdot 18.6m/s}{17N/m^3}}$

5) Distance between Plates given Mean Velocity of Flow C

6) Distance between Plates given Mean Velocity of Flow with Pressure Gradient

fx
$$w = \sqrt{\frac{12 \cdot \mu \cdot V_{mean}}{dp|dr}}$$

ex $4.829907m = \sqrt{\frac{12 \cdot 10.2P \cdot 32.4m/s}{17N/m^3}}$

ex
$$1.726782 m = \sqrt{12 \cdot 32.4 m/s \cdot 10.2 P \cdot \frac{0.10 m}{13.3 N/m^2}}$$

8) Distance between Plates given Pressure Head Drop 🗹

 $\begin{aligned} & \mathbf{fx} \mathbf{w} = \sqrt{\frac{12 \cdot \mu \cdot \mathbf{L}_{p} \cdot \mathbf{V}_{mean}}{\gamma_{f} \cdot \mathbf{h}_{location}}} \\ & \mathbf{ex} \end{aligned} \\ & \mathbf{1.458653m} = \sqrt{\frac{12 \cdot 10.2 \mathbf{P} \cdot 0.10 \mathbf{m} \cdot 32.4 \mathbf{m/s}}{9.81 \mathrm{kN/m^{3}} \cdot 1.9 \mathrm{m}}} \end{aligned}$

9) Distance between Plates given Shear Stress Distribution Profile

$$f_{X} w = 2 \cdot \left(R - \left(\frac{\tau}{dp | dr} \right) \right)$$

$$e_{X} 2.847059m = 2 \cdot \left(6.9m - \left(\frac{93.1Pa}{17N/m^{3}} \right) \right)$$

Open Calculator

10) Distance between Plates using Velocity Distribution Profile

11) Horizontal Distance given Shear Stress Distribution Profile

fx
$$\mathbf{R} = rac{\mathrm{w}}{2} + \left(rac{ au}{\mathrm{dp}|\mathrm{dr}}
ight)$$

ex
$$6.976471 \text{m} = \frac{3\text{m}}{2} + \left(\frac{93.1 \text{Pa}}{17 \text{N/m}^3}\right)$$

12) Length of Pipe given Pressure Difference 🕑

fx
$$L_p = \frac{\Delta P \cdot w \cdot w}{\mu \cdot 12 \cdot V_{mean}}$$

ex $0.301834m = \frac{13.3N/m^2 \cdot 3m \cdot 3m}{10.2P \cdot 12 \cdot 32.4m/s}$

Open Calculator

Open Calculator

© calculatoratoz.com. A softusvista inc. venture!

7/14

Mean Velocity of Flow 🕑

21) Mean Velocity of Flow given Maximum Velocity 🕑

$$f_{X} V_{mean} = \left(\frac{2}{3}\right) \cdot V_{max}$$

$$f_{X} V_{mean} = \left(\frac{2}{3}\right) \cdot 18.6 \text{m/s}$$

$$f_{X} V_{mean} = \frac{\Delta P \cdot w}{12 \cdot \mu \cdot L_{p}}$$

$$f_{X} V_{mean} = \frac{\Delta P \cdot w}{12 \cdot \mu \cdot L_{p}}$$

$$f_{X} V_{mean} = \frac{\Delta P \cdot w}{12 \cdot \mu \cdot L_{p}}$$

$$f_{X} V_{mean} = \frac{\Delta P \cdot w}{12 \cdot \mu \cdot L_{p}}$$

$$f_{X} V_{mean} = \left(\frac{M^{2}}{12 \cdot \mu}\right) \cdot 0.10 \text{m}$$

$$f_{X} V_{mean} = \left(\frac{w^{2}}{12 \cdot \mu}\right) \cdot dp | dr$$

$$f_{X} V_{mean} = \left(\frac{w^{2}}{12 \cdot \mu}\right) \cdot dp | dr$$

$$f_{X} V_{mean} = \left(\frac{(3m)^{2}}{12 \cdot 10.2P}\right) \cdot 17 \text{N/m}^{3}$$

24) Mean Velocity of Flow given Pressure Head Drop 🖸

Pressure Gradient C

25) Pressure Gradient given Maximum Velocity between Plates 🕑

$$17.24074 \mathrm{N/m^3} = -rac{93.1 \mathrm{Pa}}{rac{3\mathrm{m}}{2} - 6.9 \mathrm{m}}$$

10/14

Open Calculator

Dynamic Viscosity 🕑

27) Dynamic Viscosity given Maximum Velocity between Plates 🕑

fx
$$\mu = rac{\left(\mathrm{w}^2
ight)\cdot\mathrm{dp}|\mathrm{dr}}{8\cdot\mathrm{V}_{\mathrm{max}}}$$

ex $10.28226P = rac{\left((3m)^2\right) \cdot 17N/m^3}{8 \cdot 18.6m/s}$

28) Dynamic Viscosity given Mean Velocity of Flow with Pressure Gradient

fx
$$\mu = \left(rac{\mathrm{w}^2}{12 \cdot \mathrm{V}_{\mathrm{mean}}}
ight) \cdot \mathrm{d}p |\mathrm{d}r$$

ex $3.935185\mathrm{P} = \left(rac{(3\mathrm{m})^2}{12 \cdot 32.4\mathrm{m/s}}
ight) \cdot 17\mathrm{N/m^3}$

29) Dynamic Viscosity given Pressure Difference 🕑

fx
$$\mu = rac{\Delta P \cdot w}{12 \cdot V_{mean} \cdot L_{p}}$$

ex $10.26235P = rac{13.3N/m^{2} \cdot 3m}{12 \cdot 32.4m/s \cdot 0.10m}$

Open Calculator 🕑

Open Calculator

30) Dynamic Viscosity using Velocity Distribution Profile

$$\int \mathbf{k} \left[\mu = \left(\frac{1}{2 \cdot \mathbf{v}} \right) \cdot d\mathbf{p} | d\mathbf{r} \cdot \left(\mathbf{w} \cdot \mathbf{R}^2 \right) \right]$$

$$ex \left[197.1829P = \left(\frac{1}{2 \cdot 61.57 \text{m/s}} \right) \cdot 17N/\text{m}^3 \cdot \left(3\text{m} \cdot (6.9\text{m})^2 \right) \right]$$

Variables Used

- **D**pipe Diameter of Pipe (Meter)
- **dp|dr** Pressure Gradient (Newton per Cubic Meter)
- hlocation Head Loss due to Friction (Meter)
- L_p Length of Pipe (Meter)
- Q Discharge in Laminar Flow (Cubic Meter per Second)
- R Horizontal Distance (Meter)
- S Specific Weight of Liquid in Piezometer (Kilonewton per Cubic Meter)
- V Velocity of Liquid (Meter per Second)
- Vmax Maximum Velocity (Meter per Second)
- Vmean Mean Velocity (Meter per Second)
- W Width (Meter)
- Yf Specific Weight of Liquid (Kilonewton per Cubic Meter)
- ΔP Pressure Difference (Newton per Square Meter)
- µ Dynamic Viscosity (Poise)
- T_{smax} Maximum Shear Stress in Shaft (Newton per Square Millimeter)
- τ Shear Stress (Pascal)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Pressure in Newton per Square Meter (N/m²) Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion
- Measurement: Dynamic Viscosity in Poise (P)
 Dynamic Viscosity Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion
- Measurement: Pressure Gradient in Newton per Cubic Meter (N/m³)
 Pressure Gradient Unit Conversion
- Measurement: Stress in Pascal (Pa), Newton per Square Millimeter (N/mm²)

Stress Unit Conversion

Check other formula lists

- Dash Pot Mechanism Formulas
- Laminar Flow around a Sphere Stokes' Law Formulas
- Laminar Flow between Parallel Flat Plates, one plate moving and • Steady Laminar Flow in Circular other at rest, Couette Flow Formulas C
- Laminar Flow between Parallel Plates, both plates at rest

- Laminar Flow of Fluid in an Open Channel Formulas
- Measurement of Viscosity Viscometers Formulas
- Pipes, Hagen Poiseuille Law Formulas C

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/20/2024 | 10:00:07 AM UTC

Please leave your feedback here...

