
calculatoratoz.com

unitsconverters.com

Laminar Flow between Parallel Plates, both plates at rest Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 30 Laminar Flow between Parallel Plates, both plates at rest Formulas

Laminar Flow between Parallel Plates, both plates at rest

1) Discharge given Mean Velocity of Flow
$f_{x} Q=w \cdot V_{\text {mean }}$
ex $97.2 \mathrm{~m}^{3} / \mathrm{s}=3 \mathrm{~m} \cdot 32.4 \mathrm{~m} / \mathrm{s}$
2) Discharge given Viscosity
$f \times Q=\operatorname{dp} \left\lvert\, \operatorname{dr} \cdot \frac{w^{3}}{12 \cdot \mu_{\text {viscosity }}}\right.$
Open Calculator
ex $37.5 \mathrm{~m}^{3} / \mathrm{s}=17 \mathrm{~N} / \mathrm{m}^{3} \cdot \frac{(3 \mathrm{~m})^{3}}{12 \cdot 10.2 \mathrm{P}}$
3) Distance between Plates given Discharge
$f \mathrm{f} w=\left(\frac{\mathrm{Q} \cdot 12 \cdot \mu_{\text {viscosity }}}{d p \mid d r}\right)^{\frac{1}{3}}$
$\operatorname{ex} 3.408514 \mathrm{~m}=\left(\frac{55 \mathrm{~m}^{3} / \mathrm{s} \cdot 12 \cdot 10.2 \mathrm{P}}{17 \mathrm{~N} / \mathrm{m}^{3}}\right)^{\frac{1}{3}}$
4) Distance between Plates given Maximum Velocity between Plates
$f x w=\sqrt{\frac{8 \cdot \mu_{\text {viscosity }} \cdot V_{\max }}{d p \mid d r}}$
Open Calculator
ex $2.987976 \mathrm{~m}=\sqrt{\frac{8 \cdot 10.2 \mathrm{P} \cdot 18.6 \mathrm{~m} / \mathrm{s}}{17 \mathrm{~N} / \mathrm{m}^{3}}}$
5) Distance between Plates given Mean Velocity of Flow
$f \mathrm{x} w=\frac{\mathrm{Q}}{\mathrm{V}_{\text {mean }}}$

$$
\text { ex } 1.697531 \mathrm{~m}=\frac{55 \mathrm{~m}^{3} / \mathrm{s}}{32.4 \mathrm{~m} / \mathrm{s}}
$$

6) Distance between Plates given Mean Velocity of Flow with Pressure Gradient

$\mathbf{f x} \mathrm{w}=\sqrt{\frac{12 \cdot \mu_{\text {viscosity }} \cdot V_{\text {mean }}}{\mathrm{dp} \mid \mathrm{dr}}}$
$\mathrm{ex} 4.829907 \mathrm{~m}=\sqrt{\frac{12 \cdot 10.2 \mathrm{P} \cdot 32.4 \mathrm{~m} / \mathrm{s}}{17 \mathrm{~N} / \mathrm{m}^{3}}}$
7) Distance between Plates given Pressure Difference
$\mathrm{fx} \mathrm{w}=\sqrt{12 \cdot \mathrm{~V}_{\text {mean }} \cdot \mu_{\mathrm{viscosity}} \cdot \frac{\mathrm{L}_{\mathrm{p}}}{\Delta \mathrm{P}}}$
ex $1.726782 \mathrm{~m}=\sqrt{12 \cdot 32.4 \mathrm{~m} / \mathrm{s} \cdot 10.2 \mathrm{P} \cdot \frac{0.10 \mathrm{~m}}{13.3 \mathrm{~N} / \mathrm{m}^{2}}}$
8) Distance between Plates given Pressure Head Drop
$\mathrm{fx} \mathrm{w}=\sqrt{\frac{12 \cdot \mu_{\text {viscosity }} \cdot \mathrm{L}_{\mathrm{p}} \cdot \mathrm{V}_{\text {mean }}}{\gamma_{\mathrm{f}} \cdot \mathrm{h}_{\text {location }}}}$
ex $1.458653 \mathrm{~m}=\sqrt{\frac{12 \cdot 10.2 \mathrm{P} \cdot 0.10 \mathrm{~m} \cdot 32.4 \mathrm{~m} / \mathrm{s}}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.9 \mathrm{~m}}}$
9) Distance between Plates given Shear Stress Distribution Profile
$f_{\mathrm{x}}^{\mathrm{x}} \mathrm{w}=2 \cdot\left(\mathrm{R}-\left(\frac{\tau}{\mathrm{dp} \mid \mathrm{dr}}\right)\right)$
Open Calculator
ex $2.847059 \mathrm{~m}=2 \cdot\left(6.9 \mathrm{~m}-\left(\frac{93.1 \mathrm{~Pa}}{17 \mathrm{~N} / \mathrm{m}^{3}}\right)\right)$
10) Distance between Plates using Velocity Distribution Profile

$$
\begin{aligned}
& \mathbf{f x} \mathrm{w}=\frac{\left(\frac{-\mathrm{v} \cdot 2 \cdot \mu_{\mathrm{viscosity}}}{\mathrm{dp} \mid \mathrm{dr}}\right)+\left(\mathrm{R}^{2}\right)}{\mathrm{R}} \\
& \mathbf{e x} 5.829217 \mathrm{~m}=\frac{\left(\frac{-61.57 \mathrm{~m} / \mathrm{s} \cdot 2 \cdot 10.2 \mathrm{P}}{17 \mathrm{~N} / \mathrm{m}^{3}}\right)+\left((6.9 \mathrm{~m})^{2}\right)}{6.9 \mathrm{~m}}
\end{aligned}
$$

11) Horizontal Distance given Shear Stress Distribution Profile
$\mathrm{fx} \mathrm{R}=\frac{\mathrm{w}}{2}+\left(\frac{\tau}{\mathrm{dp} \mid \mathrm{dr}}\right)$
$\mathrm{ex} 6.976471 \mathrm{~m}=\frac{3 \mathrm{~m}}{2}+\left(\frac{93.1 \mathrm{~Pa}}{17 \mathrm{~N} / \mathrm{m}^{3}}\right)$
12) Length of Pipe given Pressure Difference
$\mathrm{fx}_{\mathrm{x}} \mathrm{L}_{\mathrm{p}}=\frac{\Delta \mathrm{P} \cdot \mathrm{w} \cdot \mathrm{w}}{\mu_{\text {viscosity }} \cdot 12 \cdot \mathrm{~V}_{\text {mean }}}$
$\mathrm{ex} 0.301834 \mathrm{~m}=\frac{13.3 \mathrm{~N} / \mathrm{m}^{2} \cdot 3 \mathrm{~m} \cdot 3 \mathrm{~m}}{10.2 \mathrm{P} \cdot 12 \cdot 32.4 \mathrm{~m} / \mathrm{s}}$
13) Length of Pipe given Pressure Head Drop
$\mathrm{fx} \mathrm{L}_{\mathrm{p}}=\frac{\gamma_{\mathrm{f}} \cdot \mathrm{w} \cdot \mathrm{w} \cdot \mathrm{h}_{\text {location }}}{12 \cdot \mu_{\text {viscosity }} \cdot \mathrm{V}_{\text {mean }}}$

$$
\text { ex } 0.422998 \mathrm{~m}=\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 3 \mathrm{~m} \cdot 3 \mathrm{~m} \cdot 1.9 \mathrm{~m}}{12 \cdot 10.2 \mathrm{P} \cdot 32.4 \mathrm{~m} / \mathrm{s}}
$$

14) Maximum Shear Stress in fluid
$\mathrm{fx}_{\mathrm{x}} \tau_{\mathrm{smax}}=0.5 \cdot \mathrm{dp} \mid \mathrm{dr} \cdot \mathrm{w}$
ex $25.5 \mathrm{~N} / \mathrm{mm}^{2}=0.5 \cdot 17 \mathrm{~N} / \mathrm{m}^{3} \cdot 3 \mathrm{~m}$
15) Maximum Velocity between Plates
$f_{\mathrm{x}} \mathrm{V}_{\max }=\frac{\left(\mathrm{w}^{2}\right) \cdot d p \mid d r}{8 \cdot \mu_{\mathrm{viscosity}}}$
ex $18.75 \mathrm{~m} / \mathrm{s}=\frac{\left((3 \mathrm{~m})^{2}\right) \cdot 17 \mathrm{~N} / \mathrm{m}^{3}}{8 \cdot 10.2 \mathrm{P}}$
16) Maximum Velocity given Mean Velocity of Flow
$f_{\mathrm{x}} \mathrm{V}_{\text {max }}=1.5 \cdot \mathrm{~V}_{\text {mean }}$
ex $48.6 \mathrm{~m} / \mathrm{s}=1.5 \cdot 32.4 \mathrm{~m} / \mathrm{s}$

17) Pressure Difference

$f \mathrm{fx} \Delta \mathrm{P}=12 \cdot \mu_{\text {viscosity }} \cdot \mathrm{V}_{\text {mean }} \cdot \frac{\mathrm{L}_{\mathrm{p}}}{\mathrm{w}^{2}}$

$$
\text { ex } 4.4064 \mathrm{~N} / \mathrm{m}^{2}=12 \cdot 10.2 \mathrm{P} \cdot 32.4 \mathrm{~m} / \mathrm{s} \cdot \frac{0.10 \mathrm{~m}}{(3 \mathrm{~m})^{2}}
$$

18) Pressure Head Drop
$\mathrm{fx} \mathrm{h}_{\text {location }}=\frac{12 \cdot \mu_{\text {viscosity }} \cdot \mathrm{L}_{\mathrm{p}} \cdot \mathrm{V}_{\text {mean }}}{\gamma_{\mathrm{f}}}$
ex $4.042569 \mathrm{~m}=\frac{12 \cdot 10.2 \mathrm{P} \cdot 0.10 \mathrm{~m} \cdot 32.4 \mathrm{~m} / \mathrm{s}}{9.81 \mathrm{kN} / \mathrm{m}^{3}}$
19) Shear Stress Distribution Profile
$\mathrm{fx} \tau=-\mathrm{dp} \left\lvert\, \mathrm{dr} \cdot\left(\frac{\mathrm{w}}{2}-\mathrm{R}\right)\right.$
Open Calculator
ex $91.8 \mathrm{~Pa}=-17 \mathrm{~N} / \mathrm{m}^{3} \cdot\left(\frac{3 \mathrm{~m}}{2}-6.9 \mathrm{~m}\right)$

20) Velocity Distribution Profile

$$
\left.\mathrm{v}=-\left(\frac{1}{2 \cdot \mu_{\text {viscosity }}}\right) \cdot \mathrm{dp} \right\rvert\, \mathrm{dr} \cdot\left(\mathrm{w} \cdot \mathrm{R}-\left(\mathrm{R}^{2}\right)\right)
$$

ex $224.25 \mathrm{~m} / \mathrm{s}=-\left(\frac{1}{2 \cdot 10.2 \mathrm{P}}\right) \cdot 17 \mathrm{~N} / \mathrm{m}^{3} \cdot\left(3 \mathrm{~m} \cdot 6.9 \mathrm{~m}-\left((6.9 \mathrm{~m})^{2}\right)\right)$

Mean Velocity of Flow

21) Mean Velocity of Flow given Maximum Velocity
$f \mathrm{fx} \mathrm{V}_{\text {mean }}=\left(\frac{2}{3}\right) \cdot \mathrm{V}_{\text {max }}$
Open Calculator
ex $12.4 \mathrm{~m} / \mathrm{s}=\left(\frac{2}{3}\right) \cdot 18.6 \mathrm{~m} / \mathrm{s}$
22) Mean Velocity of Flow given Pressure Difference
$f \mathbf{x} \mathrm{~V}_{\text {mean }}=\frac{\Delta \mathrm{P} \cdot \mathrm{w}}{12 \cdot \mu_{\text {viscosity }} \cdot \mathrm{L}_{\mathrm{p}}}$
23) Mean Velocity of Flow given Pressure Gradient
$\left.f \mathbf{f x} \mathrm{~V}_{\text {mean }}=\left(\frac{\mathrm{w}^{2}}{12 \cdot \mu_{\text {viscosity }}}\right) \cdot \mathrm{dp} \right\rvert\, \mathrm{dr}$
Open Calculator
ex $12.5 \mathrm{~m} / \mathrm{s}=\left(\frac{(3 \mathrm{~m})^{2}}{12 \cdot 10.2 \mathrm{P}}\right) \cdot 17 \mathrm{~N} / \mathrm{m}^{3}$
24) Mean Velocity of Flow given Pressure Head Drop
$\mathrm{fx} \mathrm{V}_{\text {mean }}=\frac{\Delta \mathrm{P} \cdot \mathrm{S} \cdot\left(\mathrm{D}_{\text {pipe }}^{2}\right)}{12 \cdot \mu_{\text {viscosity }} \cdot \mathrm{L}_{\mathrm{p}}}$
Open Calculator

$$
\mathrm{ex} 8.313315 \mathrm{~m} / \mathrm{s}=\frac{13.3 \mathrm{~N} / \mathrm{m}^{2} \cdot 0.75 \mathrm{kN} / \mathrm{m}^{3} \cdot\left((1.01 \mathrm{~m})^{2}\right)}{12 \cdot 10.2 \mathrm{P} \cdot 0.10 \mathrm{~m}}
$$

Pressure Gradient ©

25) Pressure Gradient given Maximum Velocity between Plates
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{dp} \left\lvert\, \mathrm{dr}=\frac{\mathrm{V}_{\max } \cdot 8 \cdot \mu_{\text {viscosity }}}{\mathrm{w}^{2}}\right.}$
ex $16.864 \mathrm{~N} / \mathrm{m}^{3}=\frac{18.6 \mathrm{~m} / \mathrm{s} \cdot 8 \cdot 10.2 \mathrm{P}}{(3 \mathrm{~m})^{2}}$
26) Pressure Gradient given Shear Stress Distribution Profile
$\mathrm{fx} \mathrm{dp} \left\lvert\, \mathrm{dr}=-\frac{\tau}{\frac{\mathrm{w}}{2}-\mathrm{R}}\right.$
Open Calculator
ex $17.24074 \mathrm{~N} / \mathrm{m}^{3}=-\frac{93.1 \mathrm{~Pa}}{\frac{3 \mathrm{~m}}{2}-6.9 \mathrm{~m}}$

Dynamic Viscosity

27) Dynamic Viscosity given Maximum Velocity between Plates
$f \times \mu_{\text {viscosity }}=\frac{\left(\mathrm{w}^{2}\right) \cdot \mathrm{dp} \mid \mathrm{dr}}{8 \cdot \mathrm{~V}_{\max }}$
Open Calculator
$\mathrm{ex} 10.28226 \mathrm{P}=\frac{\left((3 \mathrm{~m})^{2}\right) \cdot 17 \mathrm{~N} / \mathrm{m}^{3}}{8 \cdot 18.6 \mathrm{~m} / \mathrm{s}}$
28) Dynamic Viscosity given Mean Velocity of Flow with Pressure Gradient E
$\left.f x \mu_{\text {viscosity }}=\left(\frac{w^{2}}{12 \cdot V_{\text {mean }}}\right) \cdot d p \right\rvert\, d r$
$\mathrm{ex} 3.935185 \mathrm{P}=\left(\frac{(3 \mathrm{~m})^{2}}{12 \cdot 32.4 \mathrm{~m} / \mathrm{s}}\right) \cdot 17 \mathrm{~N} / \mathrm{m}^{3}$

29) Dynamic Viscosity given Pressure Difference

$\mathrm{fx} \mu_{\text {viscosity }}=\frac{\Delta \mathrm{P} \cdot \mathrm{w}}{12 \cdot \mathrm{~V}_{\text {mean }} \cdot \mathrm{L}_{\mathrm{p}}}$
ex $10.26235 \mathrm{P}=\frac{13.3 \mathrm{~N} / \mathrm{m}^{2} \cdot 3 \mathrm{~m}}{12 \cdot 32.4 \mathrm{~m} / \mathrm{s} \cdot 0.10 \mathrm{~m}}$
30) Dynamic Viscosity using Velocity Distribution Profile
$\left.f \times \mu_{\text {viscosity }}=\left(\frac{1}{2 \cdot v}\right) \cdot \operatorname{dp} \right\rvert\, \mathrm{dr} \cdot\left(\mathrm{w} \cdot \mathrm{R}^{2}\right)$
Open Calculator
$\operatorname{ex} 197.1829 \mathrm{P}=\left(\frac{1}{2 \cdot 61.57 \mathrm{~m} / \mathrm{s}}\right) \cdot 17 \mathrm{~N} / \mathrm{m}^{3} \cdot\left(3 \mathrm{~m} \cdot(6.9 \mathrm{~m})^{2}\right)$

Variables Used

- $\mathbf{D}_{\text {pipe }}$ Diameter of Pipe (Meter)
- dp|dr Pressure Gradient (Newton per Cubic Meter)
- $\mathbf{h}_{\text {location }}$ Head Loss due to Friction (Meter)
- L_{p} Length of Pipe (Meter)
- Q Discharge in Laminar Flow (Cubic Meter per Second)
- R Horizontal Distance (Meter)
- S Specific Weight of Liquid in Piezometer (Kilonewton per Cubic Meter)
- V Velocity of Liquid (Meter per Second)
- $\mathbf{V}_{\text {max }}$ Maximum Velocity (Meter per Second)
- $\mathbf{V}_{\text {mean }}$ Mean Velocity (Meter per Second)
- w Width (Meter)
- Y_{f} Specific Weight of Liquid (Kilonewton per Cubic Meter)
- $\Delta \mathrm{P}$ Pressure Difference (Newton per Square Meter)
- $\mu_{\text {viscosity }}$ Dynamic Viscosity (Poise)
- $\mathbf{T}_{\text {smax }}$ Maximum Shear Stress in Shaft (Newton per Square Millimeter)
- $\boldsymbol{\tau}$ Shear Stress (Pascal)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Pressure in Newton per Square Meter ($\mathrm{N} / \mathrm{m}^{2}$)

Pressure Unit Conversion \longleftarrow

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion
- Measurement: Dynamic Viscosity in Poise (P) Dynamic Viscosity Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter ($\mathrm{kN} / \mathrm{m}^{3}$) Specific Weight Unit Conversion
- Measurement: Pressure Gradient in Newton per Cubic Meter ($\mathrm{N} / \mathrm{m}^{3}$) Pressure Gradient Unit Conversion
- Measurement: Stress in Pascal (Pa), Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$)
Stress Unit Conversion

Check other formula lists

- Dash-Pot Mechanism Formulas
- Laminar Flow around a SphereStokes' Law Formulas
- Laminar Flow between Parallel Flat Plates, one plate moving and • other at rest, Couette Flow Formulas
- Laminar Flow between Parallell Plates, both plates at rest

Formulas

- Laminar Flow of Fluid in an Open Channel Formulas
- Measurement of Viscosity Viscometers Formulas
Steady Laminar Flow in Circular Pipes - Hagen Poiseuille Law Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

2/1/2024 | 3:55:12 PM UTC
Please leave your feedback here...

