calculatoratoz.com

Seals Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 36 Seals Formulas

Seals

Leakage through Bush Seals

1) Amount of Leakage of Fluid through Face Seal
$f \mathrm{x} Q=\frac{\pi \cdot \mathrm{t}^{3}}{6 \cdot v \cdot \ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)} \cdot\left(\frac{3 \cdot \rho \cdot \omega^{2}}{20 \cdot[\mathrm{~g}]} \cdot\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)-\mathrm{P}_{2}-\mathrm{P}_{\mathrm{i}}\right)$
ex
$176378.5 \mathrm{~mm}^{3} / \mathrm{s}=\frac{\pi \cdot(1.92 \mathrm{~mm})^{3}}{6 \cdot 7.25 \mathrm{St} \cdot \ln \left(\frac{20 \mathrm{~mm}}{14 \mathrm{~mm}}\right)} \cdot\left(\frac{3 \cdot 1100 \mathrm{~kg} / \mathrm{m}^{3} \cdot(75 \mathrm{rad} / \mathrm{s})^{2}}{20 \cdot[\mathrm{~g}]} \cdot\left((20 \mathrm{~mm})^{2}-(14 \mathrm{~mm})^{2}\right)-5 \mathrm{~Pa}-21\right.$
2) Inside Diameter of Gasket given Shape Factor
$f_{x} D_{i}=D_{o}-4 \cdot t \cdot S_{p f}$
ex $54.0096 \mathrm{~mm}=60 \mathrm{~mm}-4 \cdot 1.92 \mathrm{~mm} \cdot 0.78$
3) Internal Hydraulic Pressure given Zero Leakage of Fluid through Face Seal
$P_{2}=P_{i}+\frac{3 \cdot \rho \cdot \omega^{2}}{20} \cdot\left(r_{2}^{2}-r_{1}^{2}\right) \cdot 1000$
ex $189339.5 \mathrm{~Pa}=2 \mathrm{~Pa}+\frac{3 \cdot 1100 \mathrm{~kg} / \mathrm{m}^{3} \cdot(75 \mathrm{rad} / \mathrm{s})^{2}}{20} \cdot\left((20 \mathrm{~mm})^{2}-(14 \mathrm{~mm})^{2}\right) \cdot 1000$
4) Kinematic Viscosity given Power Loss due to Leakage of Fluid through Face Seal
$\mathrm{fx} v=\frac{13200 \cdot \mathrm{P}_{\text {loss }} \cdot \mathrm{t}}{\pi \cdot \mathrm{w}^{2} \cdot\left(\mathrm{r}_{2}^{4}-\mathrm{r}_{1}^{4}\right)}$
ex $1.4 \mathrm{E}^{\wedge} 17 \mathrm{St}=\frac{13200 \cdot 15.7 \mathrm{~W} \cdot 1.92 \mathrm{~mm}}{\pi \cdot(8.5 \mathrm{~mm})^{2} \cdot\left((20 \mathrm{~mm})^{4}-(14 \mathrm{~mm})^{4}\right)}$
5) Oil Flow through Plain Axial Bush Seal due to Leakage under Laminar Flow Condition
$f \times \mathrm{Q}=\frac{2 \cdot \pi \cdot \mathrm{a} \cdot\left(\mathrm{P}_{\mathrm{s}}-\frac{\mathrm{P}_{\text {exit }}}{10^{6}}\right)}{\mathrm{l}} \cdot \mathrm{q}$
ex $8.733628 \mathrm{~mm}^{3} / \mathrm{s}=$

$$
\frac{2 \cdot \pi \cdot 15 \mathrm{~mm} \cdot\left(16-\frac{2.1 \mathrm{MPa}}{10^{6}}\right)}{27 \mathrm{~mm}}
$$

6) Oil Flow through Plain Radial Bush Seal due to Leakage under Laminar Flow Condition
$f \mathrm{x} Q=\frac{2 \cdot \pi \cdot \mathrm{a} \cdot\left(\mathrm{P}_{\mathrm{s}}-\frac{\mathrm{P}_{\text {exit }}}{10^{6}}\right)}{\mathrm{a}-\mathrm{b}} \cdot \mathrm{q}$
ex $21.83407 \mathrm{~mm}^{3} / \mathrm{s}=\frac{2 \cdot \pi \cdot 15 \mathrm{~mm} \cdot\left(16-\frac{2.1 \mathrm{MPa}}{10^{6}}\right)}{15 \mathrm{~mm}-4.2 \mathrm{~mm}} \cdot 0.18 \mathrm{~mm}^{3} / \mathrm{s}$
7) Outside Diameter of Gasket given Shape Factor
$f \times D_{o}=D_{i}+4 \cdot t \cdot S_{p f}$
ex $59.9904 \mathrm{~mm}=54 \mathrm{~mm}+4 \cdot 1.92 \mathrm{~mm} \cdot 0.78$
8) Outside Radius of Rotating Member given Power Loss due to Leakage of Fluid through Face Seal
$f \mathbf{x} \mathrm{r}_{2}=\left(\frac{\mathrm{P}_{\text {loss }}}{\left(\frac{\pi \cdot v \cdot \mathrm{w}^{2}}{13200 \cdot t}\right)}+\mathrm{r}_{1}^{4}\right)^{\frac{1}{4}}$
$221749.3 \mathrm{~mm}=\left(\frac{15.7 \mathrm{~W}}{\left(\frac{\pi \cdot 7.25 \mathrm{St} \cdot(8.5 \mathrm{~mm})^{2}}{13200 \cdot 1.92 \mathrm{~mm}}\right)}+(14 \mathrm{~mm})^{4}\right)^{\frac{1}{4}}$
9) Power Loss or Consumption due to Leakage of Fluid through Face Seal
$\mathrm{P}_{\text {loss }}=\frac{\pi \cdot v \cdot \mathrm{w}^{2}}{13200 \cdot \mathrm{t}} \cdot\left(\mathrm{r}_{2}^{4}-\mathrm{r}_{1}^{4}\right)$
ex $7.9 \mathrm{E}^{\wedge}-16 \mathrm{~W}=\frac{\pi \cdot 7.25 \mathrm{St} \cdot(8.5 \mathrm{~mm})^{2}}{13200 \cdot 1.92 \mathrm{~mm}} \cdot\left((20 \mathrm{~mm})^{4}-(14 \mathrm{~mm})^{4}\right)$
10) Radial Pressure Distribution for Laminar Flow
$f \mathbf{f}=P_{i}+\frac{3 \cdot \rho \cdot \omega^{2}}{20 \cdot[g]} \cdot\left(r^{2}-r_{1}^{2}\right)-\frac{6 \cdot v}{\pi \cdot t^{3}} \cdot \ln \left(\frac{r}{R}\right)$
ex
$0.091989 \mathrm{MPa}=2 \mathrm{~Pa}+\frac{3 \cdot 1100 \mathrm{~kg} / \mathrm{m}^{3} \cdot(75 \mathrm{rad} / \mathrm{s})^{2}}{20 \cdot[\mathrm{~g}]} \cdot\left((25 \mathrm{~mm})^{2}-(14 \mathrm{~mm})^{2}\right)-\frac{6 \cdot 7.25 \mathrm{St}}{\pi \cdot(1.92 \mathrm{~mm})^{3}} \cdot \ln \left(\frac{25 \mathrm{~mm})}{40 \mathrm{~mm}}\right)$
11) Shape Factor for Circular or Annular Gasket
$f \times \mathrm{S}_{\mathrm{pf}}=\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{4 \cdot \mathrm{t}}$
ex $0.78125=\frac{60 \mathrm{~mm}-54 \mathrm{~mm}}{4 \cdot 1.92 \mathrm{~mm}}$
12) Thickness of Fluid between Members given Power Loss due to Leakage of Fluid through Face Seal
$\mathrm{fx} \mathrm{t}=\frac{\pi \cdot \mathrm{v} \cdot \mathrm{w}^{2}}{13200 \cdot \mathrm{P}_{\mathrm{loss}}} \cdot\left(\mathrm{r}_{2}^{4}-\mathrm{r}_{1}^{4}\right)$
ex $9.7 \mathrm{E}^{\wedge}-17 \mathrm{~mm}=\frac{\pi \cdot 7.25 \mathrm{St} \cdot(8.5 \mathrm{~mm})^{2}}{13200 \cdot 15.7 \mathrm{~W}} \cdot\left((20 \mathrm{~mm})^{4}-(14 \mathrm{~mm})^{4}\right)$
13) Thickness of Fluid between Members given Shape Factor
$\mathrm{fx} \mathrm{t}=\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{4 \cdot \mathrm{~S}_{\mathrm{pf}}}$
ex $1.923077 \mathrm{~mm}=\frac{60 \mathrm{~mm}-54 \mathrm{~mm}}{4 \cdot 0.78}$
14) Volumetric Efficiency of Reciprocating Compressor
fx $\eta_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\text {piston }}}$
ex $0.8=\frac{164 \mathrm{~m}^{3}}{205 \mathrm{~m}^{3}}$
15) Volumetric Flow Rate under Laminar Flow Condition for Axial Bush Seal for Compressible Fluid
$f x=\frac{c^{3}}{12 \cdot \mu} \cdot \frac{P_{s}+P_{\text {exit }}}{P_{\text {exit }}}$
Open Calculator
ex $7.788521 \mathrm{~mm}^{3} / \mathrm{s}=\frac{(0.9 \mathrm{~mm})^{3}}{12 \cdot 7.8 \mathrm{cP}} \cdot \frac{16+2.1 \mathrm{MPa}}{2.1 \mathrm{MPa}}$
16) Volumetric Flow Rate under Laminar Flow Condition for Radial Bush Seal for Compressible Fluid
$\mathrm{fx} q=\frac{\mathrm{c}^{3}}{24 \cdot \mu} \cdot\left(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}}\right) \cdot\left(\frac{\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\text {exit }}}{\mathrm{P}_{\text {exit }}}\right)$
ex $2.803868 \mathrm{~mm}^{3} / \mathrm{s}=\frac{(0.9 \mathrm{~mm})^{3}}{24 \cdot 7.8 \mathrm{cP}} \cdot\left(\frac{15 \mathrm{~mm}-4.2 \mathrm{~mm}}{15 \mathrm{~mm}}\right) \cdot\left(\frac{16+2.1 \mathrm{MPa}}{2.1 \mathrm{MPa}}\right)$
17) Volumetric Flow Rate under Laminar Flow Condition for Radial Bush Seal for Incompressible Fluid
$f \times q=\frac{c^{3}}{12 \cdot \mu} \cdot \frac{a-b}{a \cdot \ln \left(\frac{a}{b}\right)}$
ex $4.405219 \mathrm{~mm}^{3} / \mathrm{s}=\frac{(0.9 \mathrm{~mm})^{3}}{12 \cdot 7.8 \mathrm{cP}} \cdot \frac{15 \mathrm{~mm}-4.2 \mathrm{~mm}}{15 \mathrm{~mm} \cdot \ln \left(\frac{15 \mathrm{~mm}}{4.2 \mathrm{~mm}}\right)}$

Packingless Seals ©

18) Depth of U Collar given Leakage
$\mathrm{fx}=\frac{\pi \cdot \mathrm{c}^{3}}{12} \cdot\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right) \cdot \frac{\mathrm{d}}{\mu \cdot \mathrm{Q}_{1}}$
ex $28.02718 \mathrm{~mm}=\frac{\pi \cdot(0.9 \mathrm{~mm})^{3}}{12} \cdot(2.95 \mathrm{MPa}-2.85 \mathrm{MPa}) \cdot \frac{12.6 \mathrm{~mm}}{7.8 \mathrm{cP} \cdot 1.1 \mathrm{E} 6 \mathrm{~mm}^{3} / \mathrm{s}}$
19) Diameter of Bolt given Leakage of Fluid
$f \mathrm{f} d=\frac{12 \cdot l \cdot \mu \cdot \mathrm{Q}_{1}}{\pi \cdot \mathrm{c}^{3} \cdot\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}$
ex $12.13822 \mathrm{~mm}=\frac{12 \cdot 27 \mathrm{~mm} \cdot 7.8 \mathrm{cP} \cdot 1.1 \mathrm{E}_{\mathrm{mm}}{ }^{3} / \mathrm{s}}{\pi \cdot(0.9 \mathrm{~mm})^{3} \cdot(2.95 \mathrm{MPa}-2.85 \mathrm{MPa})}$
20) Leakage of Fluid past Rod
$\mathrm{fx} \mathrm{Q}_{1}=\frac{\pi \cdot \mathrm{c}^{3}}{12} \cdot\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right) \cdot \frac{\mathrm{d}}{\mathrm{l} \cdot \mu}$
ex $1.1 \mathrm{E}^{\wedge} 6 \mathrm{~mm}^{3} / \mathrm{s}=\frac{\pi \cdot(0.9 \mathrm{~mm})^{3}}{12} \cdot(2.95 \mathrm{MPa}-2.85 \mathrm{MPa}) \cdot \frac{12.6 \mathrm{~mm}}{27 \mathrm{~mm} \cdot 7.8 \mathrm{cP}}$
21) Radial Clearance given Leakage
$\mathrm{fx} \mathbf{c}=\left(\frac{12 \cdot \mathrm{l} \cdot \mu \cdot \mathrm{Q}_{1}}{\pi \cdot \mathrm{~d} \cdot\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}\right)^{\frac{1}{3}}$
ex $0.888868 \mathrm{~mm}=\left(\frac{12 \cdot 27 \mathrm{~mm} \cdot 7.8 \mathrm{cP} \cdot 1.1 \mathrm{E} 6 \mathrm{~mm}^{3} / \mathrm{s}}{\pi \cdot 12.6 \mathrm{~mm} \cdot(2.95 \mathrm{MPa}-2.85 \mathrm{MPa})}\right)^{\frac{1}{3}}$

Straight Cut Sealings

22) Absolute Viscosity given Leakage Velocity
$f \mathbf{f x} \mu=\frac{(\mathrm{dp}) \cdot \mathrm{r}_{\text {seal }}^{2}}{8 \cdot \mathrm{dl} \cdot \mathrm{v}}$
ex $9722.222 \mathrm{cP}=\frac{(0.14 \mathrm{MPa}) \cdot(10 \mathrm{~mm})^{2}}{8 \cdot 1.5 \mathrm{~mm} \cdot 120 \mathrm{~m} / \mathrm{s}}$
23) Absolute Viscosity given Loss of Liquid Head
$\mathrm{fx}_{\mathrm{x}} \mu=\frac{2 \cdot[\mathrm{~g}] \cdot \rho_{\mathrm{l}} \cdot \mathrm{h}_{\mu} \cdot \mathrm{d}_{1}^{2}}{64 \cdot \mathrm{v}}$
ex $0.06181 \mathrm{cP}=\frac{2 \cdot[\mathrm{~g}] \cdot 997 \mathrm{~kg} / \mathrm{m}^{3} \cdot 21 \mathrm{~mm} \cdot(34 \mathrm{~mm})^{2}}{64 \cdot 120 \mathrm{~m} / \mathrm{s}}$
24) Area of Seal in contact with Sliding member given Leakage
$f \times \mathrm{A}=\frac{\mathrm{Q}_{0}}{\mathrm{v}}$
ex $0.000208 \mathrm{~m}^{2}=\frac{0.025 \mathrm{~m}^{3} / \mathrm{s}}{120 \mathrm{~m} / \mathrm{s}}$
25) Change in Pressure given Leakage Velocity
$\mathrm{fx} \mathrm{dp}=\frac{8 \cdot(\mathrm{dl}) \cdot \mu \cdot \mathrm{v}}{\mathrm{r}_{\text {seal }}^{2}}$
ex $0.000112 \mathrm{MPa}=\frac{8 \cdot(1.5 \mathrm{~mm}) \cdot 7.8 \mathrm{cP} \cdot 120 \mathrm{~m} / \mathrm{s}}{(10 \mathrm{~mm})^{2}}$
26) Density of Liquid given Loss of Liquid Head
$\rho_{\mathrm{l}}=\frac{64 \cdot \mu \cdot \mathrm{v}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{h}_{\mu} \cdot \mathrm{d}_{1}^{2}}$
ex $125813.7 \mathrm{~kg} / \mathrm{m}^{3}=\frac{64 \cdot 7.8 \mathrm{cP} \cdot 120 \mathrm{~m} / \mathrm{s}}{2 \cdot[\mathrm{~g}] \cdot 21 \mathrm{~mm} \cdot(34 \mathrm{~mm})^{2}}$
27) Incremental Length in Direction of Velocity given Leakage Velocity
$\mathrm{fx} \mathrm{dl}=\frac{(\mathrm{dp}) \cdot \mathrm{r}_{\text {seal }}^{2}}{8 \cdot \mathrm{v} \cdot \mu}$
ex $1869.658 \mathrm{~mm}=\frac{(0.14 \mathrm{MPa}) \cdot(10 \mathrm{~mm})^{2}}{8 \cdot 120 \mathrm{~m} / \mathrm{s} \cdot 7.8 \mathrm{cP}}$
28) Leakage Velocity
$\mathrm{fx} \mathrm{v}=\frac{(\mathrm{dp}) \cdot \mathrm{r}_{\text {seal }}^{2}}{8 \cdot \mathrm{dl} \cdot \mu}$
ex $149572.6 \mathrm{~m} / \mathrm{s}=\frac{(0.14 \mathrm{MPa}) \cdot(10 \mathrm{~mm})^{2}}{8 \cdot 1.5 \mathrm{~mm} \cdot 7.8 \mathrm{cP}}$
29) Loss of Liquid Head
$\mathrm{h}_{\mu}=\frac{64 \cdot \mu \cdot \mathrm{v}}{2 \cdot[g] \cdot \rho_{\mathrm{l}} \cdot \mathrm{d}_{1}^{2}}$
ex $2650.038 \mathrm{~mm}=\frac{64 \cdot 7.8 \mathrm{cP} \cdot 120 \mathrm{~m} / \mathrm{s}}{2 \cdot[\mathrm{~g}] \cdot 997 \mathrm{~kg} / \mathrm{m}^{3} \cdot(34 \mathrm{~mm})^{2}}$
30) Modulus of Elasticity given Stress in Seal Ring
$f \times E=\frac{\sigma_{\text {seal }} \cdot h \cdot\left(\frac{d_{1}}{h}-1\right)^{2}}{0.4815 \cdot \mathrm{c}}$
ex $0.007912 \mathrm{MPa}=\frac{0.12 \mathrm{MPa} \cdot 35 \mathrm{~mm} \cdot\left(\frac{34 \mathrm{~mm}}{35 \mathrm{~mm}}-1\right)^{2}}{0.4815 \cdot 0.9 \mathrm{~mm}}$
31) Outer Diameter of Seal Ring given Loss of Liquid Head
$f \mathbf{f x} \mathrm{~d}_{1}=\sqrt{\frac{64 \cdot \mu \cdot \mathrm{v}}{2 \cdot[g] \cdot \rho_{\mathrm{l}} \cdot \mathrm{h}_{\mu}}}$
ex $381.9402 \mathrm{~mm}=\sqrt{\frac{64 \cdot 7.8 \mathrm{cP} \cdot 120 \mathrm{~m} / \mathrm{s}}{2 \cdot[\mathrm{~g}] \cdot 997 \mathrm{~kg} / \mathrm{m}^{3} \cdot 21 \mathrm{~mm}}}$
32) Quantity of Leakage
$f x \quad Q_{0}=v \cdot A$
ex $6000 \mathrm{~m}^{3} / \mathrm{s}=120 \mathrm{~m} / \mathrm{s} \cdot 50 \mathrm{~m}^{2}$
33) Radial Clearance given Stress in Seal Ring
$\mathrm{fx} \mathrm{c}=\frac{\sigma_{\text {seal }} \cdot \mathrm{h} \cdot\left(\frac{\mathrm{d}_{1}}{\mathrm{~h}}-1\right)^{2}}{0.4815 \cdot \mathrm{E}}$
ex $0.000711 \mathrm{~mm}=\frac{0.12 \mathrm{MPa} \cdot 35 \mathrm{~mm} \cdot\left(\frac{34 \mathrm{~mm}}{35 \mathrm{~mm}}-1\right)^{2}}{0.4815 \cdot 10.01 \mathrm{MPa}}$
34) Radius given Leakage Velocity
$\mathbf{f x} \mathrm{r}_{\text {seal }}=\sqrt{\frac{8 \cdot \mathrm{dl} \cdot \mu \cdot \mathrm{v}}{\mathrm{dp}}}$
ex $0.283246 \mathrm{~mm}=\sqrt{\frac{8 \cdot 1.5 \mathrm{~mm} \cdot 7.8 \mathrm{cP} \cdot 120 \mathrm{~m} / \mathrm{s}}{0.14 \mathrm{MPa}}}$

35) Stress in Seal Ring 〔

$f x \sigma_{\text {seal }}=\frac{0.4815 \cdot \mathrm{c} \cdot \mathrm{E}}{\mathrm{h} \cdot\left(\frac{\mathrm{d}_{1}}{\mathrm{~h}}-1\right)^{2}}$
ex $151.8242 \mathrm{MPa}=\frac{0.4815 \cdot 0.9 \mathrm{~mm} \cdot 10.01 \mathrm{MPa}}{35 \mathrm{~mm} \cdot\left(\frac{34 \mathrm{~mm}}{35 \mathrm{~mm}}-1\right)^{2}}$
36) Velocity given Leakage
$f x v=\frac{Q_{0}}{A}$
ex $0.0005 \mathrm{~m} / \mathrm{s}=\frac{0.025 \mathrm{~m}^{3} / \mathrm{s}}{50 \mathrm{~m}^{2}}$

Variables Used

- a Outer Radius of Plain Bush Seal (Millimeter)
- A Area (Square Meter)
- b Inner Radius of Plain Bush Seal (Millimeter)
- c Radial Clearance for Seals (Millimeter)
- d Diameter of seal bolt (Millimeter)
- \mathbf{d}_{1} Outside Diameter of Seal Ring (Millimeter)
- $\mathbf{D}_{\mathbf{i}}$ Inside Diameter of Packing Gasket (Millimeter)
- $\mathrm{D}_{\mathbf{o}}$ Outside Diameter of Packing Gasket (Millimeter)
- dl Incremental Length in Direction of Velocity (Millimeter)
- dp Pressure Change (Megapascal)
- E Modulus of Elasticity (Megapascal)
- \mathbf{h} Radial Ring Wall Thickness (Millimeter)
- $\mathbf{h}_{\boldsymbol{\mu}}$ Loss of Liquid Head (Millimeter)
- I Depth of U Collar (Millimeter)
- p Pressure at Radial Position for Bush Seal (Megapascal)
- \mathbf{p}_{1} Fluid Pressure 1 for Seal (Megapascal)
- \mathbf{p}_{2} Fluid Pressure 2 for Seal (Megapascal)
- \mathbf{P}_{2} Internal Hydraulic Pressure (Pascal)
- Pexit Exit Pressure (Megapascal)
- $\mathbf{P}_{\mathbf{i}}$ Pressure at Seal Inside Radius (Pascal)
- $\mathbf{P}_{\text {loss }}$ Power loss for seal (Watt)
- $\mathbf{P}_{\mathbf{s}}$ Minimum Percentage Compression
- q Volumetric Flow Rate per Unit Pressure (Cubic Millimeter per Second)
- Q Oil Flow from Bush Seal (Cubic Millimeter per Second)
- $\mathbf{Q}_{\mathbf{I}}$ Fluid leakage from packingless seals (Cubic Millimeter per Second)
- $\mathbf{Q}_{\mathbf{0}}$ Discharge through Orifice (Cubic Meter per Second)
- r Radial Position in Bush Seal (Millimeter)
- R Radius of rotating member inside bush seal (Millimeter)
- $\mathbf{r}_{\mathbf{1}}$ Inner Radius of Rotating Member inside Bush Seal (Millimeter)
- \mathbf{r}_{2} Outer Radius of rotating member inside bush seal (Millimeter)
- $\mathbf{r}_{\text {seal }}$ Radius of Seal (Millimeter)
- \mathbf{S}_{pf} Shape Factor for Circular Gasket
- t Thickness of Fluid between Members (Millimeter)
- V Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{a}}$ Actual volume (Cubic Meter)
- $\mathbf{V}_{\text {piston }}$ Piston Swept Volume (Cubic Meter)
- w Nominal Packing Cross-section of Bush Seal (Millimeter)
- $\boldsymbol{\eta}_{\mathbf{v}}$ Volumetric Efficiency
- $\boldsymbol{\mu}$ Absolute Viscosity of Oil in Seals (Centipoise)
- V Kinematic viscosity of bush seal fluid (Stokes)
- $\boldsymbol{\rho}$ Seal Fluid Density (Kilogram per Cubic Meter)
- $\rho_{\mathbf{I}}$ Density Of Liquid (Kilogram per Cubic Meter)
- $\boldsymbol{\sigma}_{\text {seal }}$ Stress in seal ring (Megapascal)
- $\boldsymbol{\omega}$ Rotational speed of shaft inside seal (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665 Meter/Second ${ }^{2}$

Gravitational acceleration on Earth

- Function: In, In(Number)

Natural logarithm function (base e)

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Volume in Cubic Meter $\left(\mathrm{m}^{3}\right)$

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2}) Area Unit Conversion
- Measurement: Pressure in Pascal (Pa), Megapascal (MPa) Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m / s)

Speed Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Millimeter per Second ($\mathrm{mm}^{3} / \mathrm{s}$), Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Dynamic Viscosity in Centipoise (cP)

Dynamic Viscosity Unit Conversion

- Measurement: Kinematic Viscosity in Stokes (St)

Kinematic Viscosity Unit Conversion

- Measurement: Angular Velocity in Radian per Second (rad/s)

Angular Velocity Unit Conversion

- Measurement: Density in Kilogram per Cubic Meter ($\mathrm{kg} / \mathrm{m}^{3}$)

Density Unit Conversion

Check other formula lists

- Design of Clamp and Muff Coupling Formulas
- Design of Cotter Joint Formulas
- Design of Knuckle Joint Formulas
- Packing Formulas
- Retaining Rings and Circlips Formulas

3

- Riveted Joints Formulas
- Seals Formulas
- Threaded Bolted Joints Formulas
- Welded Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

