
calculatoratoz.com

Mechanics of Orthogonal Cutting Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 10 Mechanics of Orthogonal Cutting Formulas

Mechanics of Orthogonal Cutting ©

1) Area of Cut from Tool Temperature
$\mathrm{fx} \mathrm{A}=\left(\frac{\theta \cdot \mathrm{k}^{0.44} \cdot \mathrm{c}^{0.56}}{\mathrm{C}_{0} \cdot \mathrm{U}_{\mathrm{s}} \cdot \mathrm{V}^{0.44}}\right)^{\frac{100}{22}}$
Open Calculator
ex $26.4493 \mathrm{~m}^{2}=\left(\frac{273^{\circ} \mathrm{C} \cdot\left(10.18 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)\right)^{0.44} \cdot\left(4.184 \mathrm{~kJ} / \mathrm{kg}^{*} \mathrm{~K}\right)^{0.56}}{0.29 \cdot 200 \mathrm{~kJ} / \mathrm{kg} \cdot(120 \mathrm{~m} / \mathrm{min})^{0.44}}\right)^{\frac{100}{22}}$
2) Cutting Speed from Tool Temperature
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}=\left(\frac{\theta \cdot \mathrm{k}^{0.44} \cdot \mathrm{c}^{0.56}}{\mathrm{C}_{0} \cdot \mathrm{U}_{\mathrm{s}} \cdot \mathrm{A}^{0.22}}\right)^{\frac{100}{44}}$
Open Calculator
$\operatorname{ex} 120 \mathrm{~m} / \min =\left(\frac{273^{\circ} \mathrm{C} \cdot\left(10.18 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)\right)^{0.44} \cdot\left(4.184 \mathrm{~kJ} / \mathrm{kg}^{*} \mathrm{~K}\right)^{0.56}}{0.29 \cdot 200 \mathrm{~kJ} / \mathrm{kg} \cdot\left(26.4493 \mathrm{~m}^{2}\right)^{0.22}}\right)^{\frac{100}{44}}$
3) Cutting Speed given Spindle Speed
$f \mathrm{f} \mathrm{V}=\pi \cdot \mathrm{D} \cdot \mathrm{N}$
Open Calculator
ex $120.0933 \mathrm{~m} / \mathrm{min}=\pi \cdot 0.01014 \mathrm{~m} \cdot 600 \mathrm{rev} / \mathrm{min}$
4) Machining Time given Cutting Speed
$f_{\mathrm{x}} \mathrm{t}_{\mathrm{m}}=\frac{\pi \cdot \mathrm{D} \cdot \mathrm{L}}{\mathrm{f} \cdot \mathrm{V}}$
$\mathrm{ex} 68.26232 \mathrm{~s}=\frac{\pi \cdot 0.01014 \mathrm{~m} \cdot 3 \mathrm{~m}}{0.70 \mathrm{~mm} / \mathrm{rev} \cdot 120 \mathrm{~m} / \mathrm{min}}$
5) Machining Time given Spindle Speed
$f \times \mathrm{t}_{\mathrm{m}}=\frac{\mathrm{L}}{\mathrm{f} \cdot \mathrm{N}}$
Open Calculator
ex $68.20926 \mathrm{~s}=\frac{3 \mathrm{~m}}{0.70 \mathrm{~mm} / \mathrm{rev} \cdot 600 \mathrm{rev} / \mathrm{min}}$
6) Nose Radius of Tool from Surface Finish Constraint
$f x r_{\text {nose }}=\frac{0.0321}{\mathrm{C}_{\mathrm{s}}}$
ex $0.107 \mathrm{~m}=\frac{0.0321}{0.3 \mathrm{~m}^{-1}}$
7) Specific Cutting Energy Per Unit Cutting Force from Tool Temperature
$\mathrm{fx}_{\mathrm{x}} \mathrm{U}_{\mathrm{s}}=\frac{\theta \cdot \mathrm{c}^{0.56} \cdot \mathrm{k}^{0.44}}{\mathrm{C}_{0} \cdot \mathrm{~V}^{0.44} \cdot \mathrm{~A}^{0.22}}$
Open Calculator
ex $200 \mathrm{~kJ} / \mathrm{kg}=\frac{273^{\circ} \mathrm{C} \cdot\left(4.184 \mathrm{~kJ} / \mathrm{kg}^{*} \mathrm{~K}\right)^{0.56} \cdot(10.18 \mathrm{~W} /(\mathrm{m} * \mathrm{~K}))^{0.44}}{0.29 \cdot(120 \mathrm{~m} / \mathrm{min})^{0.44} \cdot\left(26.4493 \mathrm{~m}^{2}\right)^{0.22}}$
8) Specific Heat of Work from Tool Temperature
$f \mathrm{x}=\left(\frac{\mathrm{C}_{0} \cdot \mathrm{U}_{\mathrm{s}} \cdot \mathrm{V}^{0.44} \cdot \mathrm{~A}^{0.22}}{\theta \cdot \mathrm{k}^{0.44}}\right)^{\frac{100}{56}}$
ex
$4.184 \mathrm{~kJ} / \mathrm{kg}^{*} \mathrm{~K}=\left(\frac{0.29 \cdot 200 \mathrm{~kJ} / \mathrm{kg} \cdot(120 \mathrm{~m} / \mathrm{min})^{0.44} \cdot\left(26.4493 \mathrm{~m}^{2}\right)^{0.22}}{273^{\circ} \mathrm{C} \cdot\left(10.18 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)\right)^{0.44}}\right)^{\frac{100}{56}}$
9) Surface Finish Constraint
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{s}}=\frac{0.0321}{\mathrm{r}_{\text {nose }}}$
ex $0.3 \mathrm{~m}^{-1}=\frac{0.0321}{0.107 \mathrm{~m}}$
Open Calculator
10) Thermal Conductivity of Work from Tool Temperature
$\mathrm{fx} \mathrm{k}=\left(\frac{\mathrm{C}_{0} \cdot \mathrm{U}_{\mathrm{s}} \cdot \mathrm{V}^{0.44} \cdot \mathrm{~A}^{0.22}}{\theta \cdot \mathrm{c}^{0.56}}\right)^{\frac{100}{44}}$
$10.18 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)=\left(\frac{0.29 \cdot 200 \mathrm{~kJ} / \mathrm{kg} \cdot(120 \mathrm{~m} / \mathrm{min})^{0.44} \cdot\left(26.4493 \mathrm{~m}^{2}\right)^{0.22}}{273^{\circ} \mathrm{C} \cdot\left(4.184 \mathrm{~kJ} / \mathrm{kg}^{*} \mathrm{~K}\right)^{0.56}}\right)^{\frac{100}{44}}$

Variables Used

- A Cutting Area (Square Meter)
- c Specific Heat Capacity (Kilojoule per Kilogram per K)
- C_{0} Tool Temperature Constant
- $\mathbf{C}_{\mathbf{s}}$ Constraint on Feed (1 per Meter)
- D Workpiece Diameter (Meter)
- f Feed Rate (Millimeter Per Revolution)
- k Thermal Conductivity (Watt per Meter per K)
- L Length Of Bar (Meter)
- \mathbf{N} Spindle Speed (Revolution per Minute)
- $\mathbf{r}_{\text {nose }}$ Nose Radius (Meter)
- \mathbf{t}_{m} Machining Time (Second)
- $\mathbf{U}_{\mathbf{s}}$ Specific Cutting Energy (Kilojoule per Kilogram)
- V Cutting Velocity (Meter per Minute)
- $\boldsymbol{\theta}$ Tool Temperature (Celsius)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Temperature in Celsius $\left({ }^{\circ} \mathrm{C}\right)$ Temperature Unit Conversion
- Measurement: Area in Square Meter (m^{2}) Area Unit Conversion
- Measurement: Speed in Meter per Minute ($\mathrm{m} / \mathrm{min}$) Speed Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K)) Thermal Conductivity Unit Conversion
- Measurement: Specific Heat Capacity in Kilojoule per Kilogram per K (kJ/kg*K) Specific Heat Capacity Unit Conversion
- Measurement: Angular Velocity in Revolution per Minute (rev/min) Angular Velocity Unit Conversion
- Measurement: Specific Energy in Kilojoule per Kilogram (kJ/kg) Specific Energy Unit Conversion
- Measurement: Feed in Millimeter Per Revolution (mm/rev) Feed Unit Conversion
- Measurement: Reciprocal Length in 1 per Meter (m^{-1}) Reciprocal Length Unit Conversion

Check other formula lists

- Mechanics of Orthogonal Cutting Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

