

Mechanics of Orthogonal Cutting Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

© calculatoratoz.com. A softusvista inc. venture!

List of 10 Mechanics of Orthogonal Cutting Formulas

Mechanics of Orthogonal Cutting C

1) Area of Cut from Tool Temperature

fx
$$A = \left(rac{ heta \cdot k^{0.44} \cdot c^{0.56}}{ ext{C}_0 \cdot ext{U}_{ ext{s}} \cdot ext{V}^{0.44}}
ight)^{rac{100}{22}}$$

$$\textbf{ex} \ 0.007347 \text{m}^{2} = \left(\frac{273 \,^{\circ}\text{C} \cdot \left(10.18 \text{W} / (\text{m}^{*}\text{K}) \right)^{0.44} \cdot \left(4.184 \text{kJ/kg}^{*}\text{K} \right)^{0.56}}{0.29 \cdot 200 \text{kJ/kg} \cdot \left(120 \text{m/s} \right)^{0.44}} \right)^{\frac{100}{22}}$$

2) Cutting Speed from Tool Temperature

fx
$$V = \left(rac{ heta \cdot k^{0.44} \cdot c^{0.56}}{C_0 \cdot U_s \cdot A^{0.22}}
ight)^{rac{100}{44}}$$

$$\mathbf{2m/s} = \left(\frac{273^{\circ}\text{C} \cdot (10.18\text{W}/(\text{m*K}))^{0.44} \cdot (4.184\text{kJ/kg*K})^{0.56}}{0.29 \cdot 200\text{kJ/kg} \cdot (26.4493\text{m}^2)^{0.22}}\right)^{\frac{100}{44}}$$

3) Cutting Speed given Spindle Speed

fx
$$\mathbf{V} = \pi \cdot \mathbf{D} \cdot \mathbf{N}$$

$$= 2.001556 {
m m/s} = \pi \cdot 0.01014 {
m m} \cdot 600 {
m rev/min}$$

Open Calculator

Open Calculator

Open Calculator

8) Specific Heat of Work from Tool Temperature 🕑

fx
$$\mathbf{c} = \left(rac{\mathbf{C}_0 \cdot \mathbf{U}_{\mathrm{s}} \cdot \mathbf{V}^{0.44} \cdot \mathbf{A}^{0.22}}{\theta \cdot \mathbf{k}^{0.44}}
ight)^{rac{100}{56}}$$

$$104.4024 \text{kJ/kg}^{*}\text{K} = \left(\frac{0.29 \cdot 200 \text{kJ/kg} \cdot (120 \text{m/s})^{0.44} \cdot (26.4493 \text{m}^{2})^{0.22}}{273 \,^{\circ}\text{C} \cdot (10.18 \text{W}/(\text{m}^{*}\text{K}))^{0.44}}\right)^{\frac{100}{56}}$$

9) Surface Finish Constraint 🕑

10) Thermal Conductivity of Work from Tool Temperature

fx
$$\mathbf{k} = \left(rac{\mathbf{C}_0 \cdot \mathbf{U_s} \cdot \mathbf{V}^{0.44} \cdot \mathbf{A}^{0.22}}{\mathbf{\theta} \cdot \mathbf{c}^{0.56}}
ight)^{rac{100}{44}}$$

Open Calculator

$$610.8 \text{W}/(\text{m*K}) = \left(\frac{0.29 \cdot 200 \text{kJ/kg} \cdot (120 \text{m/s})^{0.44} \cdot (26.4493 \text{m}^2)^{0.22}}{273 \,^{\circ}\text{C} \cdot (4.184 \text{kJ/kg*K})^{0.56}}\right)^{\frac{100}{44}}$$

100

Open Calculator

Variables Used

- A Cutting Area (Square Meter)
- C Specific Heat Capacity (Kilojoule per Kilogram per K)
- C Feed Constraint (1 per Meter)
- C₀ Tool Temperature Constant
- D Workpiece Diameter (Meter)
- **f** Feed Rate (Millimeter Per Revolution)
- **k** Thermal Conductivity (Watt per Meter per K)
- L Length of Bar (Meter)
- N Spindle Speed (Revolution per Minute)
- rnose Nose Radius (Meter)
- t Machining Time (Second)
- U_s Specific Cutting Energy (Kilojoule per Kilogram)
- V Cutting Velocity (Meter per Second)
- **θ** Tool Temperature (Celsius)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Temperature in Celsius (°C) Temperature Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K)) Thermal Conductivity Unit Conversion
- Measurement: Specific Heat Capacity in Kilojoule per Kilogram per K (kJ/kg*K)
 Specific Heat Capacity Unit Conversion
- Measurement: Angular Velocity in Revolution per Minute (rev/min) Angular Velocity Unit Conversion
- Measurement: **Specific Energy** in Kilojoule per Kilogram (kJ/kg) Specific Energy Unit Conversion
- Measurement: Feed in Millimeter Per Revolution (mm/rev)
 Feed Unit Conversion
- Measurement: Reciprocal Length in 1 per Meter (m⁻¹) Reciprocal Length Unit Conversion

Check other formula lists

Mechanics of Orthogonal Cutting
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/11/2024 | 9:39:00 AM UTC

Please leave your feedback here ...

