

Mechanics of Orthogonal Cutting Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 10 Mechanics of Orthogonal Cutting Formulas

Mechanics of Orthogonal Cutting

1) Area of Cut from Tool Temperature

$$\mathbf{K} \mathbf{A} = \left(rac{\mathbf{ heta} \cdot \mathbf{k}^{0.44} \cdot \mathbf{c}^{0.56}}{\mathrm{C}_0 \cdot \mathrm{U}_\mathrm{s} \cdot \mathrm{V}^{0.44}}
ight)^{rac{100}{22}}$$

Open Calculator 🗗

$$26.4493 \text{m}^2 = \left(\frac{273 \text{°C} \cdot (10.18 \text{W}/(\text{m*K}))^{0.44} \cdot (4.184 \text{kJ/kg*K})^{0.56}}{0.29 \cdot 200 \text{kJ/kg} \cdot (120 \text{m/min})^{0.44}}\right)^{\frac{100}{22}}$$

2) Cutting Speed from Tool Temperature

$$V = \left(rac{ heta \cdot k^{0.44} \cdot c^{0.56}}{ ext{C}_0 \cdot ext{U}_{ ext{s}} \cdot ext{A}^{0.22}}
ight)^{rac{100}{44}}$$

Open Calculator 🗗

$$= \left(\frac{273 \text{°C} \cdot (10.18 \text{W}/(\text{m*K}))^{0.44} \cdot (4.184 \text{kJ/kg*K})^{0.56}}{0.29 \cdot 200 \text{kJ/kg} \cdot (26.4493 \text{m}^2)^{0.22}}\right)^{\frac{100}{44}}$$

3) Cutting Speed given Spindle Speed

fx
$$V = \pi \cdot D \cdot N$$

Open Calculator 🗗

$$\texttt{ex} \ 120.0933 \text{m/min} = \pi \cdot 0.01014 \text{m} \cdot 600 \text{rev/min}$$

4) Machining Time given Cutting Speed

Open Calculator 🗗

5) Machining Time given Spindle Speed

Open Calculator

$$oxed{ex} 68.20926 ext{s} = rac{3 ext{m}}{0.70 ext{mm/rev} \cdot 600 ext{rev/min}}$$

6) Nose Radius of Tool from Surface Finish Constraint

Open Calculator

$$0.107 \mathrm{m} = rac{0.0321}{0.3 \mathrm{m}^{-1}}$$

7) Specific Cutting Energy Per Unit Cutting Force from Tool Temperature

$$ext{U}_{
m s} = rac{ heta \cdot {
m c}^{0.56} \cdot {
m k}^{0.44}}{{
m C}_0 \cdot {
m V}^{0.44} \cdot {
m A}^{0.22}}$$

$$\boxed{ 200 \text{kJ/kg} = \frac{273 \, ^{\circ}\text{C} \cdot \left(4.184 \text{kJ/kg*K}\right)^{0.56} \cdot \left(10.18 \text{W/(m*K)}\right)^{0.44} }{0.29 \cdot \left(120 \text{m/min}\right)^{0.44} \cdot \left(26.4493 \text{m}^{2}\right)^{0.22} } }$$

8) Specific Heat of Work from Tool Temperature 🗗

 $\mathbf{c} = \left(rac{\mathrm{C_0 \cdot U_s \cdot V^{0.44} \cdot A^{0.22}}}{\mathrm{\theta \cdot k^{0.44}}}
ight)^{rac{100}{56}}$

Open Calculator 🗗

ex

$$oxed{4.184 ext{kJ/kg*K} = \left(rac{0.29 \cdot 200 ext{kJ/kg} \cdot (120 ext{m/min})^{0.44} \cdot (26.4493 ext{m}^2)^{0.22}}{273 \, ext{C} \cdot (10.18 ext{W/(m*K)})^{0.44}}
ight)^{rac{100}{56}}}$$

9) Surface Finish Constraint

 $oldsymbol{\mathcal{C}}_{\mathrm{s}} = rac{0.0321}{\mathrm{r}_{\mathrm{nose}}}$

Open Calculator

$$\mathbf{ex} = 0.3 \mathrm{m}^{-1} = rac{0.0321}{0.107 \mathrm{m}}$$

10) Thermal Conductivity of Work from Tool Temperature

Open Calculator 🗗

ex

$$\boxed{10.18 \text{W}/(\text{m*K}) = \left(\frac{0.29 \cdot 200 \text{kJ/kg} \cdot (120 \text{m/min})^{0.44} \cdot (26.4493 \text{m}^2)^{0.22}}{273 \, ^{\circ}\text{C} \cdot (4.184 \text{kJ/kg*K})^{0.56}}\right)^{\frac{100}{44}}}$$

Variables Used

- A Cutting Area (Square Meter)
- C Specific Heat Capacity (Kilojoule per Kilogram per K)
- C₀ Tool Temperature Constant
- C_s Constraint on Feed (1 per Meter)
- **D** Workpiece Diameter (Meter)
- **f** Feed Rate (Millimeter Per Revolution)
- **k** Thermal Conductivity (Watt per Meter per K)
- L Length Of Bar (Meter)
- **N** Spindle Speed (Revolution per Minute)
- rnose Nose Radius (Meter)
- t_m Machining Time (Second)
- U_s Specific Cutting Energy (Kilojoule per Kilogram)
- **V** Cutting Velocity (Meter per Minute)
- θ Tool Temperature (Celsius)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)
 Time Unit Conversion
- Measurement: Temperature in Celsius (°C)
 Temperature Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Speed in Meter per Minute (m/min)
 Speed Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K))
 Thermal Conductivity Unit Conversion
- Measurement: Specific Heat Capacity in Kilojoule per Kilogram per K (kJ/kg*K)
 Specific Heat Capacity Unit Conversion
- Measurement: Angular Velocity in Revolution per Minute (rev/min)

 Angular Velocity Unit Conversion
- Measurement: Specific Energy in Kilojoule per Kilogram (kJ/kg)
 Specific Energy Unit Conversion
- Measurement: Feed in Millimeter Per Revolution (mm/rev)
 Feed Unit Conversion
- Measurement: Reciprocal Length in 1 per Meter (m⁻¹)
 Reciprocal Length Unit Conversion

Check other formula lists

 Mechanics of Orthogonal Cutting Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/15/2024 | 7:54:43 AM UTC

Please leave your feedback here...

