

Packing Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 56 Packing Formulas

Packing

Bolt Loads in Gasket Joints

1) Actual Cross-sectional Area of Bolts given Root Diameter of Thread

$$A_b = rac{2 \cdot \pi \cdot y_{sl} \cdot G \cdot N}{\sigma_{sbat}}$$

Open Calculator

$$oxed{126.6466 ext{mm}^2 = rac{2 \cdot \pi \cdot 3.85 ext{N/mm}^2 \cdot 32 ext{mm} \cdot 4.1 ext{mm}}{25.06 ext{N/mm}^2}}$$

2) Bolt Load in Design of Flange for Gasket Seating

$$W_{m1} = \left(rac{A_m + A_b}{2}
ight) \cdot \sigma_{sbat}$$

Open Calculator 🗗

$$oxed{oxed{ex}} 15612.38 ext{N} = \left(rac{1120 ext{mm}^2 + 126 ext{mm}^2}{2}
ight) \cdot 25.06 ext{N/mm}^2$$

3) Bolt load under operating condition

fx
$$W_{m1} = H + H_p$$

$$| | 15486 \mathrm{N} = 3136 \mathrm{N} + 12350 \mathrm{N} |$$

4) Bolt Load under operating condition given Hydrostatic End Force

 $\mathbf{W}_{\mathrm{m}1} = \left(\left(rac{\pi}{4} \right) \cdot (\mathrm{G})^2 \cdot \mathrm{P} \right) + \left(2 \cdot \mathrm{b} \cdot \pi \cdot \mathrm{G} \cdot \mathrm{P} \cdot \mathrm{m} \right)$

Open Calculator 🗗

ex

$$15486.8\mathrm{N} = \left(\left(\frac{\pi}{4}\right)\cdot(32\mathrm{mm})^2\cdot3.9\mathrm{MPa}\right) + \left(2\cdot4.2\mathrm{mm}\cdot\pi\cdot32\mathrm{mm}\cdot3.9\mathrm{MPa}\cdot3.75\right)$$

5) Deflection of Spring Initial Bolt Load to Seal Gasket Joint

 $\mathbf{x} \mathbf{y}_{\mathrm{sl}} = rac{\mathrm{W}_{\mathrm{m2}}}{\pi \cdot \mathrm{b} \cdot \mathrm{G}}$

Open Calculator

= $3.801245 {
m N/mm^2} = rac{1605 {
m N}}{\pi \cdot 4.2 {
m mm} \cdot 32 {
m mm}}$

6) Gasket Width given actual Cross-sectional Area of Bolts

 $N = rac{\sigma_{sbat} \cdot A_b}{2 \cdot \pi \cdot y_{sl} \cdot G}$

Open Calculator

= $rac{25.06 ext{N/mm}^2 \cdot 126 ext{mm}^2}{2 \cdot \pi \cdot 3.85 ext{N/mm}^2 \cdot 32 ext{mm}}$

7) Hydrostatic Contact Force given Bolt Load under Operating condition

 $\mathbf{H}_{\mathrm{p}} = \mathrm{W}_{\mathrm{m}1} - \left(\left(\frac{\pi}{4} \right) \cdot (\mathrm{G})^2 \cdot \mathrm{P} \right)$

Open Calculator 🗗

 $12349.43N = 15486N - \left(\left(\frac{\pi}{4}\right) \cdot (32mm)^2 \cdot 3.9MPa\right)$

8) Hydrostatic end force

 $\mathbf{f}\mathbf{x} \mathbf{H} = \mathbf{W}_{\mathrm{m}1} - \mathbf{H}_{\mathrm{p}}$

Open Calculator

= 3136 N = 15486 N - 12350 N

9) Hydrostatic End Force given Bolt Load under Operating condition

 $\mathbf{x} = \mathbf{W}_{\mathrm{m}1} - (2 \cdot \mathbf{b} \cdot \mathbf{\pi} \cdot \mathbf{G} \cdot \mathbf{m} \cdot \mathbf{P})$

Open Calculator 🚰

ex $3135.771 \text{N} = 15486 \text{N} - (2 \cdot 4.2 \text{mm} \cdot \pi \cdot 32 \text{mm} \cdot 3.75 \cdot 3.9 \text{MPa})$

10) Initial Bolt Load to seat Gasket Joint

fx $W_{m2} = \pi \cdot b \cdot G \cdot y_{sl}$

Open Calculator

ex $1625.586 \mathrm{N} = \pi \cdot 4.2 \mathrm{mm} \cdot 32 \mathrm{mm} \cdot 3.85 \mathrm{N/mm^2}$

11) Load on bolts based on hydrostatic end force

fx $F_{
m b} = f_{
m s} \cdot P_{
m t} \cdot A_{
m m}$

Open Calculator

ex $18816N = 3 \cdot 5.6MPa \cdot 1120mm^2$

12) Stress Required for Gasket Seating 🖸

 $\sigma_{
m sbat} = rac{2 \cdot \pi \cdot {
m y_{sl}} \cdot {
m G} \cdot {
m N}}{{
m A_{b}}}$

Open Calculator

 $ag{25.18859
m N/mm^2} = rac{2 \cdot \pi \cdot 3.85
m N/mm^2 \cdot 32 mm \cdot 4.1 mm}{126
m mm^2}$

13) Stress Required for Gasket Seating given Bolt Load

 $\sigma_{
m sbat} = rac{W_{
m m1}}{rac{A_{
m m} + A_{
m b}}{2}}$

Open Calculator

 $24.85714 \mathrm{N/mm^2} = \frac{15486 \mathrm{N}}{\frac{1120 \mathrm{mm^2} + 126 \mathrm{mm^2}}{2}}$

14) Test pressure given Bolt Load

 $extstyle P_{
m t} = rac{F_{
m b}}{f_{
m s} \cdot A_{
m m}}$

Open Calculator

$$= \frac{18150 \text{N}}{3 \cdot 1120 \text{mm}^2}$$

15) Total cross-sectional area of bolt at root of thread 🗗

 $A_{m1} = \frac{W_{m1}}{\sigma_{sbd}}$

Open Calculator

$$m ex = 297.8077mm^2 = rac{15486N}{52N/mm^2}$$

16) Width of U Collar given Initial Bolt Load to Seat Gasket Joint

1605N

 $b = rac{W_{m2}}{\pi \cdot G \cdot y_{sl}}$

Open Calculator

$$=$$
 $\frac{1605 \mathrm{N}}{\pi \cdot 32 \mathrm{mm} \cdot 3.85 \mathrm{N/mm^2}}$

Elastic Packing

17) Diameter of Bolt given Frictional Force exerted by Soft packing on Reciprocating rod 🛂

 $ext{d} = rac{ ext{F}_{ ext{friction}}}{.005 \cdot ext{p}}$

$$= \frac{294N}{.005 \cdot 4.24MPa}$$

18) Fluid pressure by soft packing exerted by frictional force on reciprocating rod

 $\mathbf{p} = rac{\mathrm{F}_{\mathrm{friction}}}{.005 \cdot \mathrm{d}}$

Open Calculator

 $\boxed{\texttt{ex}} 4.2 \text{MPa} = \frac{294 \text{N}}{.005 \cdot 14 \text{mm}}$

19) Fluid Pressure given Friction Resistance

 $p = rac{F_{friction} - F_0}{\mu \cdot A}$

Open Calculator

20) Fluid Pressure given Torsional Resistance

 $p = rac{M_t \cdot 2}{.005 \cdot {(d)}^2}$

Open Calculator

21) Friction resistance

 $\mathbf{F}_{\mathrm{friction}} = \mathbf{F}_0 + (\mathbf{\mu} \cdot \mathbf{A} \cdot \mathbf{p})$

Open Calculator 🗗

22) Frictional force exerted by soft packing on reciprocating rod

 $\mathbf{F}_{\mathrm{friction}} = .005 \cdot \mathbf{p} \cdot \mathbf{d}$

Open Calculator

 $= 296.8 N = .005 \cdot 4.24 MPa \cdot 14 mm$

23) Seal resistance

 $\mathbf{F}_0 = \mathrm{F}_{\mathrm{friction}} - (\mu \cdot \mathrm{A} \cdot \mathrm{p})$

Open Calculator 🗗

 $= 189.06 N = 294 N - (0.3 \cdot 82.5 mm^2 \cdot 4.24 MPa)$

24) Torsional Resistance given Fluid Pressure

 $M_{\mathrm{t}} = rac{.005 \cdot (\mathrm{d})^2 \cdot \mathrm{p}}{2}$

Open Calculator 🗗

 $\mathbf{ex} = 2.0776 \text{N} = \frac{.005 \cdot (14 \text{mm})^2 \cdot 4.24 \text{MPa}}{2}$

25) Torsional resistance in rotary motion friction

 $ext{M}_{ ext{t}} = rac{ ext{F}_{ ext{friction}} \cdot ext{d}}{2}$

Open Calculator

= $2.058N = \frac{294N \cdot 14mm}{2}$

Metallic Gaskets 🗗

26) Frictional Force given Minor diameter of bolt

Open Calculator 🗗

ex

$$560.3676N = \frac{\left(9.5 \text{mm} - \left(\frac{\sqrt{\left((34 \text{mm})^2 - (11.5 \text{mm})^2\right) \cdot 4.25 \text{MPa}}}{\sqrt{(2 \cdot 24.18 \text{N/mm}^2)}}\right)\right) \cdot 3.14 \cdot 2 \cdot 24.18 \text{N/mm}^2}{4}$$

27) Minor Diameter of Bolt given Working Strength

 $\mathbf{R} d_2 = \left(egin{array}{c} \sqrt{\left(\left(\mathrm{d_1}
ight)^2 - \left(\mathrm{d_{gb}}
ight)^2
ight) \cdot \mathrm{p_{seal}}} \ \sqrt{\left(\mathrm{i} \cdot 68.7
ight)} \end{array}
ight) + rac{4 \cdot \mathrm{F_{\mu}}}{3.14 \cdot \mathrm{i} \cdot 68.7}$

Open Calculator

$$\frac{10822.58 \text{mm}}{\sqrt{\left(i \cdot 68.7\right)}} + \frac{3.14 \cdot i \cdot 68.7}{3.14 \cdot i \cdot 68.7}$$

$$\frac{\sqrt{\left(\left(34 \text{mm}\right)^2 - \left(11.5 \text{mm}\right)^2\right) \cdot 4.25 \text{MPa}}}{\sqrt{\left(2 \cdot 68.7\right)}} + \frac{4 \cdot 560.36 \text{N}}{3.14 \cdot 2 \cdot 68.7}$$

Self Sealing Packing

28) Diameter of bolt given Radial ring wall thickness G

 $\mathbf{f}_{\mathrm{bolt}} = rac{\left(rac{\mathrm{h}}{6.36\cdot(10^{-3})}
ight)^{1}}{.2}$

Open Calculator

ex
$$36949.69 \mathrm{mm} = rac{\left(rac{47 \mathrm{mm}}{6.36 \cdot \left(10^{-3}
ight)}
ight)^{1}}{.2}$$

29) Radial ring wall thickness considering SI units 🗗

 $\mathbf{h} = 6.36 \cdot \left(10^{-3}\right) \cdot \left(\mathrm{d_{bolt}}\right)^{.2}$

$$\mathbf{ex}$$
 2.479166mm = 6.36 · (10^{-3}) · $(9 \text{mm})^{.2}$

Open Calculator

Open Calculator

Open Calculator 2

Open Calculator

30) Radial Ring Wall Thickness given Width of U shaped collar

 $h = rac{b}{4}$

ar 🛂

$$\boxed{\textbf{ex} \ 1.05 \text{mm} = \frac{4.2 \text{mm}}{4}}$$

31) Width of U collar

fx
$$b = 4 \cdot h$$

 $\boxed{188\text{mm} = 4 \cdot 47\text{mm}}$

V Ring Packing 🗗

Multiple spring installations &

32) Bolt Load given Flange pressure

 $F_{\mathrm{b}} = p_{\mathrm{f}} \cdot a \cdot rac{C_{\mathrm{u}}}{n}$

 $\boxed{15.4\mathrm{N} = 5.5\mathrm{MPa} \cdot 100\mathrm{mm}^2 \cdot \frac{0.14}{\mathtt{g}}}$

33) Bolt Load given Modulus of Elasticity and Increment Length

 $\mathbf{F}_{\mathrm{b}} = \mathrm{E} \cdot rac{\mathrm{dl}}{\left(rac{\mathrm{l}_{1}}{\mathrm{A}_{\mathrm{i}}}
ight) + \left(rac{\mathrm{l}_{2}}{\mathrm{A}_{\mathrm{t}}}
ight)}$

$$(A_{i}) + (A_{t})$$

$$99.53362N = 10.01MPa \cdot \frac{1.5mm}{\left(\frac{3.2mm}{53mm^{2}}\right) + \left(\frac{3.8mm}{42mm^{2}}\right)}$$

© <u>calculatoratoz.com</u>. A <u>softusvista inc.</u> venture!

34) Bolt load in gasket joint

 $\mathbf{F}_{\mathrm{b}} = 11 \cdot rac{\mathrm{m}_{\mathrm{ti}}}{\mathrm{dn}}$

Open Calculator

35) Flange pressure developed due to tightening of bolt

 $\boxed{\mathbf{p}_f = n \cdot \frac{F_b}{a \cdot C_u}}$

Open Calculator

ex $6482.143 \text{MPa} = 5 \cdot \frac{18150 \text{N}}{100 \text{mm}^2 \cdot 0.14}$

36) Flange pressure given Twisting moment

fx $p_{
m f} = 2 \cdot {
m n} \cdot rac{{
m T}}{{
m a} \cdot {
m C}_{
m u} \cdot {
m d}_{
m holt}}$

Open Calculator

ex $1031.746 \mathrm{MPa} = 2 \cdot 5 \cdot \frac{13 \mathrm{N*m}}{100 \mathrm{mm}^2 \cdot 0.14 \cdot 9 \mathrm{mm}}$

37) Gasket Area given Flange pressure

 $\mathbf{x} = \mathbf{n} \cdot \frac{\mathbf{F}_b}{\mathbf{p}_f \cdot \mathbf{C}_u}$

Open Calculator

ex 117857.1mm² = $5 \cdot \frac{18150$ N 5.5MPa $\cdot 0.14$

38) Initial Bolt Torque given Bolt Load 🚰

 $\mathbf{m}_{ ext{ti}} = ext{dn} \cdot rac{ ext{F}_{ ext{b}}}{11}$

Open Calculator 🗗

= 4.62N = 2.8mm $\cdot \frac{18150N}{11}$

39) Minimum percentage compression

 $\mathbf{F}_{\mathrm{s}} = 100 \cdot \left(1 - \left(rac{\mathrm{b}}{\mathrm{h_{i}}}
ight)
ight)$

Open Calculator

 $\boxed{\mathbf{ex}} \ 30 = 100 \cdot \left(1 - \left(\frac{4.2 \mathrm{mm}}{6 \mathrm{mm}}\right)\right)$

40) Nominal Bolt Diameter given Bolt Load

 $dn = 11 \cdot rac{m_{ti}}{F_{b}}$

Open Calculator 🗗

 $= 11.515152 \mathrm{mm} = 11 \cdot \frac{2.5 \mathrm{N}}{18150 \mathrm{N}}$

41) Number of Bolts given Flange pressure 🖒

 $n = p_f \cdot a \cdot rac{C_u}{F_b}$

Open Calculator

 $oxed{ex} 0.004242 = 5.5 ext{MPa} \cdot 100 ext{mm}^2 \cdot rac{0.14}{18150 ext{N}}$

42) Twisting Moment given Flange Pressure

 $ext{T} = rac{ ext{p}_{ ext{f}} \cdot ext{a} \cdot ext{C}_{ ext{u}} \cdot ext{d}_{ ext{bolt}}}{2 \cdot ext{n}}$

Open Calculator

 $ext{ex} \ 0.0693 ext{N*m} = rac{5.5 ext{MPa} \cdot 100 ext{mm}^2 \cdot 0.14 \cdot 9 ext{mm}}{2 \cdot 5}$

43) Uncompressed gasket thickness

 \mathbf{f} $\mathbf{h}_{i} = rac{100 \cdot \mathbf{b}}{100 - P_{s}}$

Open Calculator

 $= \frac{100 \cdot 4.2 \text{mm}}{100 - 16}$

44) Width of u collar given uncompressed Gasket Thickness

 $b = rac{(\mathrm{h_i}) \cdot (100 - \mathrm{P_s})}{100}$

Open Calculator

 $5.04 \text{mm} = \frac{(6 \text{mm}) \cdot (100 - 16)}{100}$

Single spring installations

45) Actual Diameter of Spring Wire given Actual mean diameter of Conical spring

Open Calculator 🗗

 $\boxed{21.5 \text{mm} = 2 \cdot \left(8 \text{mm} + 7 \text{mm} - \left(\frac{8.5 \text{mm}}{2}\right)\right)}$

46) Actual Diameter of Spring Wire given Deflection of Spring

 $extbf{d}_{ ext{sw}} = .0123 \cdot rac{\left(ext{D}_{ ext{driver a}}
ight)^2}{ ext{y}}$

Open Calculator

 $= 0.302769 \text{mm} = .0123 \cdot \frac{(8 \text{mm})^2}{2.6 \text{mm}}$

47) Actual mean diameter of conical spring

 $extbf{D}_{ ext{driver a}} = ext{D}_{ ext{o}} - \left(rac{1}{2}
ight) \cdot \left(ext{w} + ext{d}_{ ext{sw}}
ight)$

Open Calculator

48) Actual Mean Diameter of Conical Spring given Deflection of Spring

 $extbf{D}_{ ext{driver a}} = rac{\left(rac{ ext{y}\cdot ext{d}_{ ext{sw}}}{0.0123}
ight)^1}{2}$

Open Calculator 🚰

 $oxed{ex} 0.422764 \mathrm{mm} = rac{\left(rac{2.6 \mathrm{mm} \cdot 4 \mathrm{mm}}{0.0123}
ight)^1}{2}$

49) Deflection of conical spring 🚰

 $y = .0123 \cdot rac{\left(\mathrm{D_{driver\ a}}
ight)^2}{\mathrm{d_{sw}}}$

Open Calculator 🚰

 $= 0.1968 \text{mm} = .0123 \cdot \frac{(8 \text{mm})^2}{4 \text{mm}}$

50) Diameter of wire for spring given Mean diameter of Conical spring

fx $d_{\mathrm{sw}} = rac{\left(rac{\pi\cdot(\mathrm{D_m})^2}{139300}
ight)^1}{3}$

Open Calculator

ex $3.3\text{E}^-6\text{mm} = \frac{\left(\frac{\pi \cdot (21\text{mm})^2}{139300}\right)^1}{2}$

51) Inside diameter of member given Mean diameter of Conical spring

 $\mathbf{E} D_{\mathrm{i}} = D_{\mathrm{m}} - \left(\left(rac{3}{2}
ight) \cdot \mathrm{w}
ight)$

Open Calculator 🗗

52) Mean diameter of conical spring

 $D_{\mathrm{m}} = D_{\mathrm{i}} + \overline{\left(\left(rac{3}{2}
ight) \cdot \mathrm{w}
ight)}$

Open Calculator

 $\boxed{18.15 \text{mm} = 5.4 \text{mm} + \left(\left(\frac{3}{2} \right) \cdot 8.5 \text{mm} \right)}$

53) Mean diameter of conical spring given Diameter of spring wire $oldsymbol{\mathcal{G}}$

 $\mathbf{f}_{\mathbf{x}} \mathbf{D}_{\mathrm{m}} = rac{\left(rac{\left(\mathrm{d}_{\mathrm{sw}}
ight)^{3} \cdot 139300}{\pi}
ight)^{1}}{2}$

Open Calculator

 $extbf{ex} = rac{\left(rac{(4 ext{mm})^3 \cdot 139300}{\pi}
ight)^1}{2}$

54) Nominal packing cross section given Actual mean diameter of Conical spring

Open Calculator

$$26 ext{mm} = 2 \cdot \left(8 ext{mm} + 7 ext{mm} - \left(rac{4 ext{mm}}{2}
ight)
ight)$$

55) Nominal packing cross section given Mean diameter of Conical spring

Open Calculator

$$10.4 \text{mm} = (21 \text{mm} - 5.4 \text{mm}) \cdot \frac{2}{3}$$

56) Outer Diameter of spring wire given Actual mean diameter of Conical spring

$$= 1.75 \text{mm} = 8 \text{mm} - \left(\frac{1}{2}\right) \cdot (8.5 \text{mm} + 4 \text{mm})$$

Variables Used

- a Gasket Area (Square Millimeter)
- A Area of seal contacting sliding member (Square Millimeter)
- Ab Actual Bolt Area (Square Millimeter)
- Ai Area of cross section at the inlet (Square Millimeter)
- A_m Greater Cross-section Area of Bolts (Square Millimeter)
- A_{m1} Bolt Cross-sectional Area at Root of Thread (Square Millimeter)
- At Area of cross section at the throat (Square Millimeter)
- **b** Width of u-collar (Millimeter)
- C_u Torque Friction Coefficient
- **d** Diameter of elastic packing bolt (Millimeter)
- d₁ Outside Diameter of Seal Ring (Millimeter)
- d₂ Minor Diameter of Metallic Gasket Bolt (Millimeter)
- dbolt Diameter of Bolt (Millimeter)
- Ddriver a Actual mean diameter of spring (Millimeter)
- d_{qb} Nominal diameter of metallic gasket bolt (Millimeter)
- **D**_i Inside Diameter (Millimeter)
- **D**_m Mean Diameter of Conical Spring (Millimeter)
- **D**_o Outer diameter of spring wire (Millimeter)
- d_{sw} Diameter of spring wire (Millimeter)
- dl Incremental Length in Direction of Velocity (Millimeter)
- dn Nominal Bolt Diameter (Millimeter)
- E Modulus of Elasticity (Megapascal)
- F₀ Seal Resistance (Newton)
- **F**_b Bolt Load in Gasket Joint (Newton)
- **F**_c Design Stress for metallic gasket (Newton per Square Millimeter)

- F_{friction} Friction Force in elastic packing (Newton)
- fs Factor of Safety for Bolt Packing
- **F**_u Friction force in metallic gasket (Newton)
- **G** Gasket Diameter (Millimeter)
- **h** Radial Ring Wall Thickness (Millimeter)
- **H** Hydrostatic End Force in Gasket Seal (Newton)
- **h**i Uncompressed gasket thickness (Millimeter)
- H_p Total Joint Surface Compression Load (Newton)
- i Number of bolts in metallic gasket seal
- I₁ Length of joint 1 (Millimeter)
- l₂ Length of joint 2 (Millimeter)
- m Gasket Factor
- M_f Torsional Resistance in Elastic Packing (Newton)
- **m**_{ti} Initial bolt torque (Newton)
- n Number of Bolts
- N Gasket Width (Millimeter)
- p Fluid Pressure in elastic packing (Megapascal)
- P Pressure at Outer Diameter of Gasket (Megapascal)
- **p**_f Flange pressure (Megapascal)
- Ps Minimum Percentage Compression
- p_{seal} Fluid Pressure on Metallic Gasket Seal (Megapascal)
- Pt Test Pressure in Bolted Gasket Joint (Megapascal)
- T Twisting Moment (Newton Meter)
- w Nominal Packing Cross-section of Bush Seal (Millimeter)
- W_{m1} Bolt Load Under Operating Condition for Gasket (Newton)
- W_{m2} Initial bolt load to seat the gasket joint (Newton)
- y Deflection of Conical Spring (Millimeter)
- y_{sl} Gasket Unit Seating Load (Newton per Square Millimeter)

- µ Coefficient of Friction in elastic packing
- σ_{sbat} Stress Required for Gasket Seating (Newton per Square Millimeter)
- σ_{sbd} Stress Required for Operating Condition for Gasket (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²)

 Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Moment of Force in Newton Meter (N*m)
 Moment of Force Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)

 Stress Unit Conversion

Check other formula lists

- Design of Clamp and Muff Coupling Formulas
- Design of Cotter Joint Formulas
- Design of Knuckle Joint Formulas
- Packing Formulas

- Retaining Rings and Circlips
 Formulas
- Riveted Joints Formulas
- Seals Formulas
- Threaded Bolted Joints Formulas
- Welded Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/11/2024 | 5:15:21 AM UTC

Please leave your feedback here...

