

Rational Method to Estimate the Flood Peak Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 20 Rational Method to Estimate the Flood Peak Formulas

Rational Method to Estimate the Flood Peak 🕑

1) Coefficient of Runoff when Peak Discharge for Field Application is Considered

fx
$$\mathrm{C_r} = rac{\mathrm{Q_p}}{\left(rac{1}{3.6}
ight) \cdot \mathrm{i_{tcp}} \cdot \mathrm{A_D}}$$

ex
$$0.5 = rac{4 {
m m}^3/{
m s}}{\left(rac{1}{3.6}
ight) \cdot 5.76 {
m mm}/{
m h} \cdot 18 {
m km}^2}$$

2) Coefficient of Runoff when Peak Value is Considered 🕑

fx
$$C_r = rac{Q_p}{A_D \cdot i}$$

ex $0.5 = rac{4m^3/s}{18km^2 \cdot 1.6mm/h}$

Open Calculator

Open Calculator

3) Drainage Area given Peak Discharge for Field Application

fx
$$A_D = rac{Q_p}{\left(rac{1}{3.6}
ight) \cdot i_{tcp} \cdot C_r}$$

ex $18 \mathrm{km}^2 = rac{4\mathrm{m}^3/\mathrm{s}}{\left(rac{1}{3.6}
ight) \cdot 5.76\mathrm{mm/h} \cdot 0.5}$

4) Drainage Area when Peak Discharge for Field Application is Considered

fx
$$A_D = rac{Q_p}{\left(rac{1}{3.6}
ight) \cdot i_{tcp} \cdot C_r}$$

ex $18 \mathrm{km}^2 = rac{4\mathrm{m}^3/\mathrm{s}}{\left(rac{1}{3.6}
ight) \cdot 5.76\mathrm{mm/h} \cdot 0.5}$

5) Drainage Area when Peak Discharge is Considered 🕑

fx
$$A_D = \frac{Q_p}{i \cdot C_r}$$

ex $18km^2 = \frac{4m^3/s}{1.6mm/h \cdot 0.5}$

Open Calculator

Open Calculator

6) Intensity of Precipitation when Peak Discharge for Field Application is Considered Open Calculator fx $i_{tcp} = rac{Q_p}{\left(rac{1}{3.6} ight) \cdot C_r \cdot A_D}$ ex 5.76mm/h = $\frac{4$ m³/s}{(\frac{1}{2.6}) \cdot 0.5 \cdot 18km² 7) Intensity of Rainfall when Peak Discharge is Considered 🗹 Open Calculator $\mathbf{fx} \left| \mathbf{i} = \frac{\mathbf{Q}_{p}}{\mathbf{C}_{r} \cdot \mathbf{A}_{r}} \right|$ ex $1.6 \text{mm/h} = \frac{4 \text{m}^3/\text{s}}{0.5 \cdot 18 \text{km}^2}$ 8) Peak Discharge Equation based on Field Application 💪 Open Calculator $\left| \mathbf{Q}_{\mathrm{p}} = \left(rac{1}{3.6} ight) \cdot \mathrm{C_{r}} \cdot \mathrm{i_{tcp}} \cdot \mathrm{A_{D}} ight|$

ex
$$4\mathrm{m}^3/\mathrm{s}=\left(rac{1}{3.6}
ight)\cdot 0.5\cdot 5.76\mathrm{mm}/\mathrm{h}\cdot 18\mathrm{km}^2$$

()

17) Time of Concentration from Kirpich Adjustment Factor 💪 Open Calculator fx $ext{t}_{ ext{c}} = 0.01947 \cdot ext{K}_{1}^{0.77}$ **ex** 86.7077s = $0.01947 \cdot (54772.26)^{0.77}$ US Practice 18) Basin Lag for Foot Hill Drainage Area 🗹 Open Calculator fx $ext{t}_{ ext{p}} = 1.03 \cdot \left(ext{L}_{ ext{basin}} \cdot rac{ ext{L}_{ ext{ca}}}{\sqrt{ ext{S}_{ ext{B}}}} ight)^{0.25}$ ex $6.093265h = 1.03 \cdot \left(9.4 \text{km} \cdot \frac{12.0 \text{km}}{\sqrt{1.1}}\right)^{0.38}$ 19) Basin Lag for Mountainous Drainage Areas 🕻 Open Calculator fx $t_{p} = 1.715 \cdot \left(L_{basin} \cdot \frac{L_{ca}}{\sqrt{S_{p}}} \right)^{0.5}$ ex $10.14558h = 1.715 \cdot \left(9.4 \text{km} \cdot \frac{12.0 \text{km}}{\sqrt{1.1}}\right)^0$

7/11

Open Calculator 🕑

20) Basin Lag for Valley Drainage Areas 子

$$\begin{aligned} & \mathbf{f_x} \mathbf{t_p} = 0.5 \cdot \left(\mathbf{L_{basin}} \cdot \frac{\mathbf{L_{ca}}}{\sqrt{\mathbf{S_B}}} \right)^{0.38} \\ & \mathbf{ex} \end{aligned} \\ & \mathbf{2.957896h} = 0.5 \cdot \left(9.4 \mathrm{km} \cdot \frac{12.0 \mathrm{km}}{\sqrt{1.1}} \right)^{0.38} \end{aligned}$$

Variables Used

- A_D Drainage Area (Square Kilometer)
- C_r Runoff Coefficient
- i Intensity of Rainfall (Millimeter per Hour)
- itcp Mean Intensity of Precipitation (Millimeter per Hour)
- K₁ Kirpich Adjustment Factor
- L Maximum Length of Travel of Water (Kilometer)
- Lbasin Basin Length (Kilometer)
- Lca Distance along Main Water Course (Kilometer)
- **Q**p Peak Discharge (Cubic Meter per Second)
- S Slope of Catchment
- SB Basin Slope
- t_c Time of Concentration (Second)
- t_p Basin Lag (Hour)
- **ΔH** Difference in Elevation (Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Kilometer (km), Meter (m) Length Unit Conversion
- Measurement: Time in Second (s), Hour (h) Time Unit Conversion
- Measurement: Area in Square Kilometer (km²) Area Unit Conversion
- Measurement: Speed in Millimeter per Hour (mm/h) Speed Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion

Check other formula lists

- Empirical Formulae for Flood-Peak Area Relationships
 Formulas
- Gumbel's Method for Prediction of Flood's Peak Formulas
- Rational Method to Estimate the Flood Peak Formulas
- Risk, Reliability and Log-Pearson
 Distribution Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

4/1/2024 | 7:04:21 AM UTC

Please leave your feedback here...

