

Gumbel's Method for Prediction of Flood's Peak Formulas

Calculators!

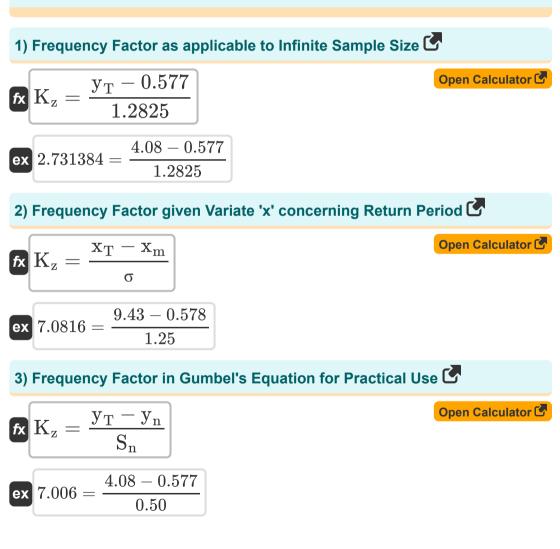
Examples!

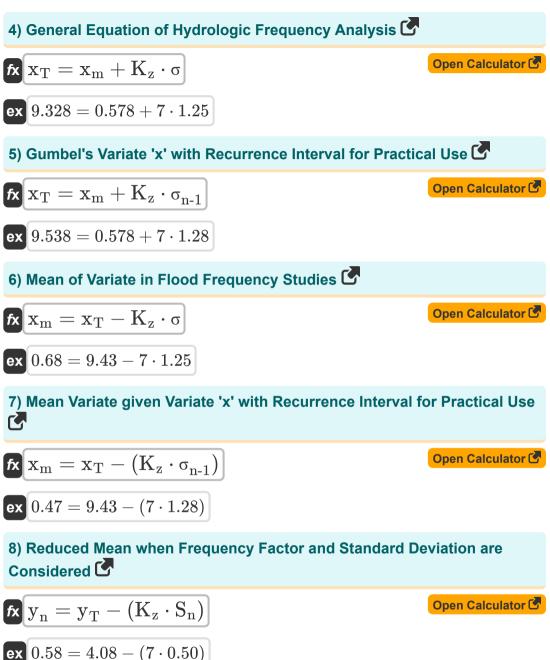
Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!


Please leave your feedback here...



List of 22 Gumbel's Method for Prediction of Flood's Peak Formulas

Gumbel's Method for Prediction of Flood's Peak 🛃

3/10

9) Reduced Standard Deviation when Variate and Reduced Mean is Considered 🚰

$$\begin{array}{c} \hline \textbf{K} \quad S_n = \frac{y_T - y_n}{K_z} & \mbox{Open Calculator } \textbf{K} \\ \hline \textbf{K} \quad 0.500429 = \frac{4.08 - 0.577}{7} \\ \hline \textbf{M} \quad \textbf{N} \\ \hline \textbf{M} \quad \textbf{M} \\ \hline \textbf{M} \quad \textbf{M} \\ \hline \textbf{M} \\ \textbf{M} \\$$

ex $9.537 = 7 \cdot 1.28 + 0.577$

13) Reduced Variate 'Y' for given Return Period 🕑

$$f = -\left(0.834 + 2.303 \cdot \log 10 \left(\log 10 \left(\frac{T_r}{T_r - 1}\right)\right)\right)$$
ex
$$5.008378 = -\left(0.834 + 2.303 \cdot \log 10 \left(\log 10 \left(\frac{150}{150 - 1}\right)\right)\right)$$
14) Reduced Variate 'Y' in Gumbel's Method (Arrow Section 1.285 \cdot (x_T - x_m)) + 0.577
f = 9.676856 = $\left(\frac{1.285 \cdot (9.43 - 0.578)}{1.25}\right) + 0.577$
Confidence Limits (Arrow Section 1.25)

fx
$$\mathbf{x}_1 = \mathbf{x}_\mathrm{T} + \mathbf{f}_\mathrm{c} \cdot \mathbf{S}_\mathrm{e}$$

16) Confidence Interval of Variate Bounded by X2 🕑

fx
$$\mathbf{x}_2 = \mathbf{x}_{\mathrm{T}} + \mathbf{f}_{\mathrm{c}} \cdot \mathbf{S}_{\mathrm{e}}$$
 Open Calculator P \mathbf{X} 12.43 = 9.43 + 15 \cdot 0.2

Open Calculator 🕑

Gumbel's Method for Prediction of Flood's Peak Formulas... 6/10 17) Equation for Confidence Interval of Variate Open Calculator fx $\mathrm{x}_{1} = \mathrm{x}_{\mathrm{T}} - \mathrm{f}_{\mathrm{c}} \cdot \mathrm{S}_{\mathrm{e}}$ ex $6.43 = 9.43 - 15 \cdot 0.2$ 18) Equation for Confidence Interval of Variate Bounded by x2 Open Calculator fx $\mathrm{x}_2 = \mathrm{x_T} - \mathrm{f_c} \cdot \mathrm{S_e}$ ex $6.43 = 9.43 - 15 \cdot 0.2$ 19) Equation for Variate 'b' using Frequency Factor 💪 Open Calculator fx $\mathbf{b} = \sqrt{1 + (1.3 \cdot \mathrm{K_z}) + \left(1.1 \cdot \mathrm{K_z^2}\right)}$

ex
$$8 = \sqrt{1 + (1.3 \cdot 7) + (1.1 \cdot (7)^2)}$$

20) Probable Error 🗹

fx
$$S_e = b \cdot \left(\frac{\sigma_{n-1}}{\sqrt{N}}\right)$$

ex $0.200017 = 8 \cdot \left(\frac{1.28}{\sqrt{2621}}\right)$

Open Calculator 🚰

21) Sample Size when Probable Error is Considered 🕑

fx
$$N = \left(\frac{b \cdot \sigma_{n-1}}{S_e}\right)^2$$

ex $2621.44 = \left(\frac{8 \cdot 1.28}{0.2}\right)^2$

22) Variate 'b' given Probable Error 🕑

$$\mathbf{fx} \mathbf{b} = \mathbf{S}_{e} \cdot \frac{\sqrt{N}}{\sigma_{n-1}}$$

$$\mathbf{ex} 7.999329 = 0.2 \cdot \frac{\sqrt{2621}}{1.28}$$

51

Open Calculator 🕑

Variables Used

- **b** Variable 'b' in Probable Error
- **f**_c Function of Confidence Probability
- K_z Frequency Factor
- N Sample Size
- Se Probable Error
- S_n Reduced Standard Deviation
- T_r Return Period
- X1 Value of 'x1' Bounded to Variate 'Xt'
- X2 Value of 'x2' Bounded to Variate 'Xt'
- Xm Mean of the Variate X
- XT Variate 'X' with a Recurrence Interval
- y Reduced Variate 'Y'
- yn Reduced Mean
- **y_T** Reduced Variate 'Y' for Return Period
- ytf Reduced Variate 'Y' with Respect to Frequency
- **o** Standard Deviation of the Z Variate Sample
- σ_{n-1} Standard Deviation of the Sample of Size N

Constants, Functions, Measurements used

- Function: In, In(Number) Natural logarithm function (base e)
- Function: log10, log10(Number) Common logarithm function (base 10)
- Function: **sqrt**, sqrt(Number) Square root function

Check other formula lists

- Empirical Formulae for Flood-Peak Area Relationships Formulas
 - Gumbel's Method for Prediction of Flood's Peak Formulas
 - Rational Method to Estimate the Flood Peak Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

2/14/2024 | 3:10:13 PM UTC

Please leave your feedback here ...

