

DC Drives Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 DC Drives Formulas

DC Drives

Single Phase Drives

1) Average Armature Voltage of Single Phase Full-Converter Drives

$$ag{V_{
m a(full)}} = rac{2 \cdot {
m V_m} \cdot {
m cos}(lpha)}{\pi}$$

Open Calculator 🗗

2) Average Armature Voltage of Single Phase Half-Wave Converter Drive

$$extbf{K} V_{ ext{a(half)}} = rac{ ext{V}_{ ext{m}}}{2 \cdot \pi} \cdot (1 + \cos(lpha))$$

Open Calculator 🗗

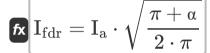
$$ext{ex} \ 46.98961 ext{V} = rac{220 ext{V}}{2 \cdot \pi} \cdot (1 + \cos(70^\circ))$$

3) Average Field Voltage of Single Phase Semi-Converter Drives

$$V_{
m f(semi)} = \left(rac{V_{
m m}}{\pi}
ight) \cdot (1+\cos(lpha))$$

Open Calculator

$$\texttt{ex} \boxed{93.97922 \text{V} = \left(\frac{220 \text{V}}{\pi}\right) \cdot \left(1 + \cos(70°)\right)}$$


4) Input Power of Single Phase Full Converter Drives

$$ext{P}_{ ext{in}} = \left(rac{2\cdot\sqrt{2}}{\pi}
ight)\cdot\cos(lpha)$$

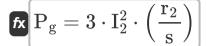
Open Calculator

5) RMS Value of Freewheeling Diode Current in Half Wave Converter Drives

Open Calculator

$$25 ext{A} = 30 ext{A} \cdot \sqrt{rac{\pi + 70^\circ}{2 \cdot \pi}}$$

6) RMS Value of Thyristor Current in Half Wave Converter Drives


$$I_{
m sr} = I_{
m a} \cdot \left(rac{\pi - lpha}{2 \cdot \pi}
ight)^{rac{1}{2}}$$

$$oxed{16.58312 ext{A} = 30 ext{A} \cdot \left(rac{\pi - 70^{\circ}}{2 \cdot \pi}
ight)^{rac{1}{2}}}$$

Three Phase Drives

7) Air Gap Power in Three Phase Induction Motor Drives 🗗

Open Calculator

ex $21.93485 \mathrm{W} = 3 \cdot \left(1.352 \mathrm{A}\right)^2 \cdot \left(\frac{0.4 \Omega}{0.1}\right)$

8) Armature Terminal Voltage in Half-Wave Converter Drives

 $extbf{V}_{
m o} = \left(rac{3\cdot {
m V}_{
m ml}}{2\cdot \pi}
ight)\cdot \cos(lpha)$

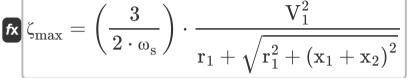
Open Calculator 🗗

9) Average Armature Voltage of Three Phase Full-Converter Drives 🖸

 $ag{V_{a(ext{full_3p})} = rac{3 \cdot \sqrt{3} \cdot V_{m} \cdot \cos(lpha)}{\pi}}$

Open Calculator 🖸

 $\boxed{124.4533\mathrm{V} = \frac{3\cdot\sqrt{3}\cdot220\mathrm{V}\cdot\cos(70°)}{\pi}}$


10) Average Field Voltage of Three Phase Semi-Converter Drive

 $\mathbf{v}_{\mathrm{f(semi_3p)}} = rac{3 \cdot \mathrm{V_m} \cdot (1 + \cos(lpha))}{2 \cdot \pi}$

Open Calculator

 $extbf{ex} 140.9688 ext{V} = rac{3 \cdot 220 ext{V} \cdot (1 + \cos(70\degree))}{2 \cdot \pi}$

11) Maximum Torque in Induction Motor Drives

Open Calculator

ex

$$127.8202 ext{N*m} = \left(rac{3}{2 \cdot 157 ext{m/s}}
ight) \cdot rac{\left(230 ext{V}
ight)^2}{0.6 \Omega + \sqrt{\left(0.6 \Omega
ight)^2 + \left(1.6 \Omega + 1.7 \Omega
ight)^2}}$$

Variables Used

- **l**₂ Rotor Current (Ampere)
- **l**_a Armature Current (Ampere)
- Ifdr RMS Freewheeling Diode Current (Ampere)
- Isr RMS of Source Current (Ampere)
- Pa Air Gap Power (Watt)
- Pin Input Power (Watt)
- r₁ Stator Resistance (Ohm)
- r₂ Rotor Resistance (Ohm)
- S Slip
- V₁ Terminal Voltage (Volt)
- Va(full) Full Drive Armature Voltage (Volt)
- Va(full 3p) Full Drive Armature Voltage in Three Phase (Volt)
- Va(half) Half Drive Armature Voltage (Volt)
- V_{f(semi)} Semi Drive Field Voltage (Volt)
- V_{f(semi_3p)} Semi Drive Field Voltage in Three Phase (Volt)
- V_m Peak Input Voltage (Volt)
- V_{ml} Maximum Line Voltage (Volt)
- **V** Average Output Voltage (Volt)
- X₁ Stator Leakage Reactance (Ohm)
- X₂ Rotor Leakage Reactance (Ohm)
- α Delay Angle of Thyristor (Degree)

DC Drives Formulas...

7/9

- ζ_{max} Maximum Torque (Newton Meter)
- ω_s Synchronous Speed (Meter per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: cos, cos(Angle)

 Trigonometric cosine function
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Electric Current in Ampere (A)
 Electric Current Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Power in Watt (W)
 Power Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion
- Measurement: Electric Potential in Volt (V)
 Electric Potential Unit Conversion
- Measurement: Torque in Newton Meter (N*m)
 Torque Unit Conversion

Check other formula lists

- Choppers Formulas
- Controlled Rectifiers Formulas Formulas
- DC Drives Formulas
- Inverters Formulas

- Silicon Controlled Rectifier
- Switching Regulator Formulas
- **Uncontrolled Rectifiers** Formulas [4

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

12/17/2023 | 1:02:54 PM UTC

Please leave your feedback here...

