

Flow of Liquids inside Packed Beds Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 12 Flow of Liquids inside Packed Beds Formulas

Flow of Liquids inside Packed Beds 🕑

fx
$$\mu = rac{\mathrm{D_o} \cdot \mathrm{U_b} \cdot
ho}{\mathrm{Re_{pb}} \cdot (1 - \in)}$$

ex
$$24.925 ext{Pa*s} = rac{25 ext{m} \cdot 0.05 ext{m/s} \cdot 997 ext{kg/m}^3}{200 \cdot (1 - 0.75)}$$

2) Density of Fluid by Ergun

fx
$$ho = rac{ ext{Re}_{ ext{pb}} \cdot \mu \cdot (1 - \in)}{ ext{D}_{ ext{eff}} \cdot ext{U}_{ ext{b}}}$$

ex
$$997.399 \text{kg/m}^{3} = rac{200 \cdot 24.925 \text{Pa}^{*} \text{s} \cdot (1 - 0.75)}{24.99 \text{m} \cdot 0.05 \text{m/s}}$$

3) Effective Particle Diameter by Ergun given Frication Factor

fx
$$D_{
m eff} = rac{{
m f}_{
m f}\cdot {
m L}_{
m b}\cdot {
m U}_{
m b}^2\cdot (1-\in)}{{
m g}\cdot {
m H}_{
m f}\cdot \in^3}$$
 ,

ex
$$24.79214 \mathrm{m} = rac{1.148 \cdot 1100 \mathrm{m} \cdot \left(0.05 \mathrm{m/s}
ight)^2 \cdot \left(1 - 0.75
ight)}{9.8 \mathrm{m/s^2} \cdot 0.0077 \mathrm{m} \cdot \left(0.75
ight)^3}$$

Open Calculator 🕑

Open Calculator

Open Calculator

4) Effective Particle Diameter by Ergun given Reynolds Number

$$\begin{split} & \text{Open Calculator } \raspace{1.157162} \\ & \text{Open Calculator } \rasp$$

7) Friction Factor by Ergun for Rep Value between 1 and 2500 🕑

11) Reynolds Number of Packed Beds by Ergun 🕑

fx
$$\operatorname{Re}_{\mathrm{pb}} = \frac{\mathrm{D}_{\mathrm{eff}} \cdot \mathrm{U}_{\mathrm{b}} \cdot \rho}{\mathrm{u} \cdot (1 - \epsilon)}$$

$$e_{\rm pb} = \frac{\mu \cdot (1 - \epsilon)}{\mu \cdot (1 - \epsilon)}$$

ex
$$199.92 = rac{24.99 \mathrm{m} \cdot 0.05 \mathrm{m/s} \cdot 997 \mathrm{kg/m^3}}{24.925 \mathrm{Pa^*s} \cdot (1 - 0.75)}$$

12) Superficial Velocity by Ergun given Reynolds Number 💪

Open Calculator

Variables Used

- ∈ Void Fraction
- Deff Diameter(eff) (Meter)
- **D**o Diameter of Object (Meter)
- **f**_f Factor of Friction
- g Acceleration due to Gravity (Meter per Square Second)
- H_f Head of Fluid (Meter)
- L_b Length of Packaged Bed (Meter)
- Repb Reynolds Number(pb)
- Svm Mean Specific Surface
- U_b Superficial Velocity (Meter per Second)
- µ Absolute Viscosity (Pascal Second)
- **p** Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion
- Measurement: Dynamic Viscosity in Pascal Second (Pa*s)
 Dynamic Viscosity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion

Check other formula lists

 Flow of Liquids inside Packed Beds Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/16/2024 | 7:26:58 AM UTC

Please leave your feedback here ...

