

Flow of Liquids inside Packed Beds Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Flow of Liquids inside Packed Beds Formulas

Flow of Liquids inside Packed Beds

1) Absolute Viscosity of Fluid by Ergun

$$\mu = rac{\mathrm{D} \cdot \mathrm{U_b} \cdot \mathrm{
ho}}{\mathrm{Re_{pb}} \cdot (1 - \in)}$$

Open Calculator

ex
$$24.925$$
Pa*s = $\frac{25\text{m} \cdot 0.05\text{m/s} \cdot 997\text{kg/m}^3}{200 \cdot (1 - 0.75)}$

2) Density of Fluid by Ergun

$$ho = rac{ ext{Re}_{ ext{pb}} \cdot \mu \cdot (1-\in)}{ ext{D}_{ ext{eff}} \cdot ext{U}_{ ext{b}}}$$

Open Calculator 🚰

$$\boxed{ 997.399 \text{kg/m}^3 = \frac{200 \cdot 24.925 \text{Pa*s} \cdot (1 - 0.75)}{24.99 \text{m} \cdot 0.05 \text{m/s}} }$$

3) Effective Particle Diameter by Ergun given Frication Factor

$$\mathbf{D}_{\mathrm{eff}} = rac{\mathbf{f} \cdot \mathbf{L} \cdot \mathbf{U}_{\mathrm{b}}^2 \cdot (1 - \in)}{\mathbf{g} \cdot \mathbf{H}_{\mathrm{f}} \cdot \in^3}$$

Open Calculator 🗗

4) Effective Particle Diameter by Ergun given Reynolds Number 🗗

 $\mathbf{E} \mathbf{D}_{\mathrm{eff}} = rac{\mathrm{Re}_{\mathrm{pb}} \cdot \mu \cdot (1 - \in)}{\mathrm{U}_{\mathrm{b}} \cdot
ho}$

Open Calculator 🚰

$$= \frac{200 \cdot 24.925 Pa^*s \cdot (1 - 0.75)}{0.05 m/s \cdot 997 kg/m^3}$$

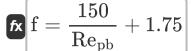
5) Friction Factor by Beek

 $\mathbf{f} = rac{1-\epsilon}{\epsilon^3} \cdot \left(1.75 + 150 \cdot \left(rac{1-\epsilon}{\mathrm{Re_{pb}}}
ight)
ight)$

Open Calculator 🗗

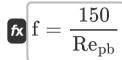
$$oxed{ex} 1.148148 = rac{1-0.75}{\left(0.75
ight)^3} \cdot \left(1.75 + 150 \cdot \left(rac{1-0.75}{200}
ight)
ight)$$

6) Friction Factor by Ergun


$$f = rac{\mathbf{g} \cdot \mathbf{D}_{\mathrm{eff}} \cdot \mathbf{H}_{\mathrm{f}} \cdot \in^{3}}{\mathbf{L} \cdot \mathbf{U}_{\mathrm{b}}^{2} \cdot (1 - \in)}$$

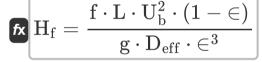
Open Calculator 🗗

$$= 1.157162 = \frac{9.8 \text{m/s}^2 \cdot 24.99 \text{m} \cdot 0.0077 \text{m} \cdot (0.75)^3}{1100 \text{m} \cdot (0.05 \text{m/s})^2 \cdot (1 - 0.75)}$$


7) Friction Factor by Ergun for Rep Value between 1 and 2500

Open Calculator

 $\boxed{\textbf{ex}} \ 2.5 = \frac{150}{200} + 1.75$


8) Friction Factor by Kozeny-Carman

Open Calculator

 $\boxed{0.75 = \frac{150}{200}}$

9) Head of Fluid Lost Due to Friction

Open Calculator 🗗

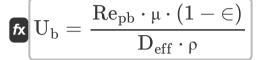
 $= \frac{0.007639 \text{m} = \frac{1.148 \cdot 1100 \text{m} \cdot (0.05 \text{m/s})^2 \cdot (1 - 0.75)}{9.8 \text{m/s}^2 \cdot 24.99 \text{m} \cdot (0.75)^3}$

10) Mean Effective Diameter

$$extbf{D} = rac{6}{ ext{S}_{ ext{vm}}}$$

Open Calculator

 $\boxed{25\mathrm{m} = \frac{6}{0.24}}$



11) Reynolds Number of Packed Beds by Ergun 🗗

 $\operatorname{Re}_{\mathrm{pb}} = rac{\mathrm{D}_{\mathrm{eff}} \cdot \mathrm{U}_{\mathrm{b}} \cdot \mathrm{
ho}}{\mu \cdot (1 - \in)}$

Open Calculator 🖸

12) Superficial Velocity by Ergun given Reynolds Number 🗗

Open Calculator

 $= \frac{0.05002 \text{m/s} = \frac{200 \cdot 24.925 \text{Pa*s} \cdot (1 - 0.75)}{24.99 \text{m} \cdot 997 \text{kg/m}^3}$

Variables Used

- ∈ Void Fraction
- D Diameter (Meter)
- D_{eff} Diameter(eff) (Meter)
- f Friction Factor
- g Acceleration due to Gravity (Meter per Square Second)
- H_f Head of Fluid (Meter)
- L Length of Packaged Bed (Meter)
- Repb Reynolds Number(pb)
- S_{vm} Mean Specific Surface
- **U**_b Superficial Velocity (Meter per Second)
- µ Absolute Viscosity (Pascal Second)
- p Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)
 Acceleration Unit Conversion
- Measurement: Dynamic Viscosity in Pascal Second (Pa*s)
 Dynamic Viscosity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

 Density Unit Conversion

Check other formula lists

• Flow of Liquids inside Packed Beds Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/17/2024 | 5:50:26 AM UTC

Please leave your feedback here...

