
calculatoratoz.com

## Levelling Formulas

## Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

## List of 23 Levelling Formulas

## Levelling ©

1) Angle of Dip for Compass Surveying
$\mathrm{fx} \theta=\frac{\mathrm{D}}{\mathrm{R}} \cdot\left(\frac{180}{\pi}\right)$
Open Calculator
$\mathrm{ex} 18.29507^{\circ}=\frac{35.5 \mathrm{~m}}{6370} \cdot\left(\frac{180}{\pi}\right)$
2) Back Sight given Height of Instrument
fx $\mathrm{BS}=\mathrm{HI}-\mathrm{RL}$
Open Calculator
ex $36 m=65 m-29 m$
3) Combined Error Due to Curvature and Refraction
$f \mathrm{fx} \quad \mathrm{c} \_\mathrm{r}=0.0673 \cdot \mathrm{D}^{2}$
Open Calculator
ex $84.81482 \mathrm{~m}=0.0673 \cdot(35.5 \mathrm{~m})^{2}$
4) Correction on Refraction Error
$f \mathrm{fx} \mathrm{c}_{\mathrm{r}}=0.0112 \cdot \mathrm{D}^{2}$
Open Calculator
ex $14.1148=0.0112 \cdot(35.5 \mathrm{~m})^{2}$

5）Difference in Elevation between Ground Points in short lines under Trigonometric levelling $\boxed{\Omega}$
$f \mathrm{fx} \Delta \mathrm{h}=\mathrm{D}_{\mathrm{p}} \cdot \sin (\mathrm{M})+\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{t}}$
ex $50.6452 \mathrm{~m}=80 \mathrm{~m} \cdot \sin \left(37^{\circ}\right)+22 \mathrm{~m}-19.5 \mathrm{~m}$
6）Difference in Elevation between Two Points using Barometric Levelling $工$

$$
\mathrm{D}_{\mathrm{p}}=18336.6 \cdot\left(\log 10\left(\mathrm{~h}_{\mathrm{i}}\right)-\log 10\left(\mathrm{~h}_{\mathrm{t}}\right)\right) \cdot\left(1+\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{500}\right)
$$

## ex

$2058.222 \mathrm{~m}=18336.6 \cdot(\log 10(22 \mathrm{~m})-\log 10(19.5 \mathrm{~m})) \cdot\left(1+\frac{8^{\circ} \mathrm{C}+17^{\circ} \mathrm{C}}{500}\right)$
7）Distance between Two points under Curvature and Refraction
$f \times D=\left(2 \cdot R \cdot c+\left(c^{2}\right)\right)^{\frac{1}{2}}$
Open Calculator
ex $35.49642 \mathrm{~m}=\left(2 \cdot 6370 \cdot 0.0989+\left((0.0989)^{2}\right)\right)^{\frac{1}{2}}$
8）Distance for small errors under Curvature and Refraction
$f \mathrm{f} D=\sqrt{2 \cdot \mathrm{R} \cdot \mathrm{c}}$
Open Calculator
ex $35.49628 \mathrm{~m}=\sqrt{2 \cdot 6370 \cdot 0.0989}$
9) Distance to Visible Horizon
$\mathrm{fx} \mathrm{D}=\sqrt{\frac{\mathrm{h}}{0.0673}}$
ex $35.53873 \mathrm{~m}=\sqrt{\frac{85 \mathrm{~m}}{0.0673}}$
10) Error Due to Curvature Effect $\boxed{\boxed{ } 1}$
$\mathrm{fx} \mathrm{c}=\frac{\mathrm{D}^{2}}{2 \cdot R}$
Open Calculator
ex $0.098921=\frac{(35.5 \mathrm{~m})^{2}}{2 \cdot 6370}$
11) Height of Instrument
$f \mathrm{fx}=\mathrm{RL}+\mathrm{BS}$
Open Calculator
ex $49 \mathrm{~m}=29 \mathrm{~m}+20 \mathrm{~m}$
12) Height of Observer
$f \times h=0.0673 \cdot D^{2}$
Open Calculator
ex $84.81482 \mathrm{~m}=0.0673 \cdot(35.5 \mathrm{~m})^{2}$
13) Permissible Closing Error for Accurate Levelling
$f x e=12 \cdot \sqrt{D}$
Open Calculator
ex $71.49825 \mathrm{~m}=12 \cdot \sqrt{35.5 \mathrm{~m}}$
囲
14) Permissible Closing Error for Ordinary Levelling
$f \mathrm{x} e=24 \cdot \sqrt{\mathrm{D}}$
ex $142.9965 \mathrm{~m}=24 \cdot \sqrt{35.5 \mathrm{~m}}$
15) Permissible Closing Error for Precise Levelling
$\mathrm{fx} \mathrm{e}=4 \cdot \sqrt{\mathrm{D}}$
Open Calculator
ex $23.83275 \mathrm{~m}=4 \cdot \sqrt{35.5 \mathrm{~m}}$
16) Permissible Closing Error for Rough Levelling
$f x e=100 \cdot \sqrt{D}$
Open Calculator
ex $595.8188 \mathrm{~m}=100 \cdot \sqrt{35.5 \mathrm{~m}}$
17) Reduced Level given Height of Instrument
$f \mathbf{x}$ RL $=\mathrm{HI}-\mathrm{BS}$
Open Calculator
ex $45 \mathrm{~m}=65 \mathrm{~m}-20 \mathrm{~m}$

## Sensitiveness of Level Tube

18) Angle between Line of Sights given Radius of Curvature $\qquad$
$\mathrm{fx} \alpha=\mathrm{n} \cdot \frac{\mathrm{l}}{\mathrm{R}_{\mathrm{C}}}$
ex $0.084507 \mathrm{rad}=9 \cdot \frac{2 \mathrm{~mm}}{213 \mathrm{~mm}}$
19) Angle between Line of Sights in Radians
$\mathrm{fx} \alpha=\frac{\mathrm{S}_{\mathrm{i}}}{\mathrm{D}}$
ex $0.084507 \mathrm{rad}=\frac{3 \mathrm{~m}}{35.5 \mathrm{~m}}$
20) Distance from Instrument to Staff given Angle between LOS
$\mathrm{fx} \mathrm{D}=\frac{\mathrm{s}_{\mathrm{i}}}{\alpha}$
ex $37.5 \mathrm{~m}=\frac{3 \mathrm{~m}}{0.08 \mathrm{rad}}$
21) Number of Division where Bubble Moves given Staff Intercept
$f \times n=s_{i} \cdot \frac{R_{C}}{1 \cdot D}$
ex $9=3 \mathrm{~m} \cdot \frac{213 \mathrm{~mm}}{2 \mathrm{~mm} \cdot 35.5 \mathrm{~m}}$

# 22) Radius of Curvature of Tube 

$\mathrm{fx}_{\mathrm{x}} \mathrm{R}_{\mathrm{C}}=\mathrm{n} \cdot \mathrm{l} \cdot \frac{\mathrm{D}}{\mathrm{s}_{\mathrm{i}}}$
$213 \mathrm{~mm}=9 \cdot 2 \mathrm{~mm} \cdot \frac{35.5 \mathrm{~m}}{3 \mathrm{~m}}$

# 23) Staff Intercept given Angle between LOS 

$f \mathrm{x} \mathrm{s}_{\mathrm{i}}=\alpha \cdot \mathrm{D}$
ex $2.84 \mathrm{~m}=0.08 \mathrm{rad} \cdot 35.5 \mathrm{~m}$

## Variables Used

- BS Back Sight (Meter)
- C Error due to Curvature
- $\mathbf{C r}_{\mathbf{r}}$ Refraction Correction
- C_r Combined Error (Meter)
- D Distance between Two Points (Meter)
- $\mathbf{D}_{\mathbf{p}}$ Distance between Points (Meter)
- e Closing Error (Meter)
- h Height of Observer (Meter)
- $\mathbf{h}_{\mathbf{i}}$ Height of point A (Meter)
- $\mathbf{h}_{\mathbf{t}}$ Height of point B (Meter)
- HI Height of Instrument (Meter)
- I One Division Length (Millimeter)
- M Measured Angle (Degree)
- n Number of Division
- $\mathbf{R}$ Earth Radius in km
- $\mathbf{R}_{\mathbf{C}}$ Radius of Curvature (Millimeter)
- RL Reduced Level (Meter)
- $\mathbf{S}_{\mathbf{i}}$ Staff Intercept (Meter)
- $\mathrm{T}_{1}$ Temperature at Lower Ground Level (Celsius)
- $\mathbf{T}_{2}$ Temperature at Higher level (Celsius)
- $\alpha$ Angle between LOS (Radian)
- $\mathbf{\Delta} \mathbf{h}$ Elevation Difference (Meter)
- $\boldsymbol{\theta}$ Dip Angle (Degree)


## Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: $\log 10, \log 10($ Number)

Common logarithm function (base 10)

- Function: $\boldsymbol{\operatorname { s i n }}, \sin ($ Angle)

Trigonometric sine function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m), Millimeter (mm)

Length Unit Conversion

- Measurement: Temperature in Celsius $\left({ }^{\circ} \mathrm{C}\right)$

Temperature Unit Conversion

- Measurement: Angle in Degree ( ${ }^{\circ}$ ), Radian (rad)

Angle Unit Conversion

## Check other formula lists

- Levelling Formulas

Feel free to SHARE this document with your friends!

## PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

