

Retaining Rings and Circlips Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 18 Retaining Rings and Circlips Formulas

Retaining Rings and Circlips

Depth of Groove

1) Depth of Groove given Allowable Impact Loading on Groove

$$D_{
m g} = F_{
m ig} \cdot rac{2}{F_{
m tg}}$$

Open Calculator

2) Depth of Groove given Allowable Static Thrust Load and Allowable Impact Loading on Groove

$$\left[\mathrm{D_g} = rac{\mathrm{F_{ig}} \cdot 2}{\mathrm{F_{tg}}}
ight]$$

Open Calculator

$$= 3.888889 m = \frac{35 N \cdot 2}{18 N}$$

3) Depth of Groove given allowable Static Thrust Load on Groove 🗗

Open Calculator 2

$$D_{g} = rac{f_{s} \cdot \Phi \cdot F_{tg}}{C \cdot D \cdot \pi \cdot \sigma_{sy}}$$

$$= \frac{2.8 \cdot 0.85 \cdot 18N}{0.11 \cdot 3.6m \cdot \pi \cdot 9Pa}$$

4) Depth of Groove given Allowable Static Thrust Load on Ring which is Subject to Shear

$$D_{
m g} = rac{{
m F}_{
m ig} \cdot rac{2}{{
m F}_{
m tg}}}{1000}$$

Open Calculator 2

$$= \frac{35 \text{N} \cdot \frac{2}{18 \text{N}}}{1000}$$

Factor of Safety G

5) Factor of Safety given allowable Static Thrust Load on Groove 🗗

$$\mathbf{f_s} = rac{\mathbf{C} \cdot \mathbf{D} \cdot \mathbf{D_g} \cdot \mathbf{\pi} \cdot \mathbf{\sigma_{sy}}}{\mathbf{F_{tg}} \cdot \mathbf{\Phi}}$$

$$\mathbf{ex} \left[2.780864 = rac{0.11 \cdot 3.6 \mathrm{m} \cdot 3.8 \mathrm{m} \cdot \pi \cdot 9 \mathrm{Pa}}{18 \mathrm{N} \cdot 0.85}
ight]$$

6) Factor of Safety given Allowable Static Thrust Load on Ring 🚰

Open Calculator 🗗

$$=$$
 $5.831581 = rac{0.11 \cdot 3.6 ext{m} \cdot 5 ext{m} \cdot \pi \cdot 6 ext{N}}{6.4 ext{N}}$

Load Capacities of Groove

7) Allowable impact loading on groove

Open Calculator

$$= 34.2 \mathrm{N} = \frac{18 \mathrm{N} \cdot 3.8 \mathrm{m}}{2}$$

8) Allowable Static Thrust Load given Allowable Impact Loading on Groove

Open Calculator

$$= 18.42105 \mathrm{N} = 35 \mathrm{N} \cdot rac{2}{3.8 \mathrm{m}}$$

9) Allowable Static Thrust Load on Groove

 $\mathbf{F}_{\mathrm{tg}} = rac{\mathrm{C}\cdot\mathrm{D}\cdot\mathrm{D}_{\mathrm{g}}\cdot\pi\cdot\sigma_{\mathrm{sy}}}{\mathrm{f}_{\mathrm{s}}\cdot\Phi}$

Open Calculator 🗗

ex $17.87698 ext{N} = rac{0.11 \cdot 3.6 ext{m} \cdot 3.8 ext{m} \cdot \pi \cdot 9 ext{Pa}}{2.8 \cdot 0.85}$

10) Shaft Diameter given allowable Static Thrust Load on Groove

 $egin{equation} \mathbf{f} \mathbf{x} \ D = rac{F_{tg} \cdot f_s \cdot \Phi}{C \cdot D_g \cdot \pi \cdot \sigma_{sy}} \end{aligned}$

Open Calculator

 $= \frac{18N \cdot 2.8 \cdot 0.85}{0.11 \cdot 3.8m \cdot \pi \cdot 9Pa}$

11) Tensile Yield Strength of Groove Material given allowable Static Thrust Load on Groove

 $\sigma_{sy} = rac{f_s \cdot \Phi \cdot F_{tg}}{C \cdot D \cdot \pi \cdot D_g}$

Open Calculator 🗗

Open Calculator 2

Open Calculator

Open Calculator 2

Load Capacities of Retaining Rings G

12) Allowable impact loading on ring

fx $\left| ext{F}_{ ext{ir}} = rac{ ext{F}_{ ext{rT}} \cdot ext{t}}{2}
ight|$

 $\boxed{16\mathrm{N} = \frac{6.4\mathrm{N} \cdot 5\mathrm{m}}{2}}$

13) Allowable Static Thrust Load on Ring given Allowable Impact Loading

 $\left| \mathbf{F}_{\mathrm{rT}} = \mathbf{F}_{\mathrm{ir}} \cdot rac{2}{\mathrm{t}}
ight|$

 $\boxed{\textbf{ex} \ 6.4 \text{N} = 16 \text{N} \cdot \frac{2}{5 \text{m}}}$

14) Allowable static thrust load on ring which is subject to shear 🗗

 $oxed{\mathrm{F_{rT}} = rac{\mathrm{C} \cdot \mathrm{D} \cdot \mathrm{t} \cdot \pi \cdot \mathrm{ au_s}}{\mathrm{F_s}}}$

 $\mathbf{ex} \left[6.434848 \mathrm{N} = \frac{0.11 \cdot 3.6 \mathrm{m} \cdot 5 \mathrm{m} \cdot \pi \cdot 6 \mathrm{N}}{} \right]$ 5.8

15) Ring Thickness given Allowable Impact Loading on Ring 🗗

Open Calculator

Open Calculator 2

Open Calculator G

fx $t = F_{ir} \cdot rac{2}{F_{rT}}$

 $\boxed{\texttt{ex}} 5 \text{m} = 16 \text{N} \cdot \frac{2}{6.4 \text{N}}$

16) Ring Thickness given Allowable Static Thrust Load on Ring which is subject to Shear

 $t = F_{rT} \cdot rac{F_s}{C \cdot D \cdot \pi \cdot au}$

5.8 $\left| 4.972922\mathrm{m} = 6.4\mathrm{N} \cdot rac{5.6}{0.11 \cdot 3.6\mathrm{m} \cdot \pi \cdot 6\mathrm{N}}
ight|$

17) Shaft Diameter given Allowable Static Thrust Load on Ring which is subject to Shear

 $\left| \mathbf{D} = \mathbf{F}_{\mathrm{rT}} \cdot rac{\mathbf{F}_{\mathrm{s}}}{\mathbf{C} \cdot \mathbf{t} \cdot \pi \cdot au}
ight|$

 $= 3.580504 \mathrm{m} = 6.4 \mathrm{N} \cdot rac{5.8}{0.11 \cdot 5 \mathrm{m} \cdot \pi \cdot 6 \mathrm{N}}$

18) Shear Strength of Ring Material given Allowable Static Thrust Load on Ring

Open Calculator

$$= 5.967507 \mathrm{N} = 6.4 \mathrm{N} \cdot rac{5.8}{0.11 \cdot 5 \mathrm{m} \cdot \pi \cdot 3.6 \mathrm{m} }$$

Variables Used

- C Conversion Factor
- **D** Shaft Diameter (Meter)
- D_q Depth of Groove (Meter)
- Fig Allowable Impact Loading on Groove (Newton)
- Fir Allowable Impact Loading on Ring (Newton)
- Frt Allowable Static Thrust Load on Ring (Newton)
- f_s Factor of Safety
- F_s Safety Factor
- Ftq Allowable Static Thrust Load on Groove Wall (Newton)
- **t** Ring Thickness (Meter)
- σ_{sv} Tensile Yield Strength of Groove Material (Pascal)
- T_S Shear Strength of Metal Ring (Newton)
- D Reduction Factor

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Measurement: Length in Meter (m)

 Length Unit Conversion
- Measurement: Pressure in Pascal (Pa)
 Pressure Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion

Check other formula lists

- Design of Cotter Joint Formulas
- Design of Knuckle Joint Formulas
- Packing Formulas
- Retaining Rings and Circlips
 Formulas

- Riveted Joints Formulas
- Seals Formulas
- Threaded Bolted Joints
 Formulas
- Welded Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/29/2024 | 6:23:33 AM UTC

Please leave your feedback here...

