
calculatoratoz.com

unitsconverters.com

Retaining Rings and Circlips Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 18 Retaining Rings and Circlips Formulas

Retaining Rings and Circlips

Depth of Groove ${ }^{[3}$

1) Depth of Groove given Allowable Impact Loading on Groove

$$
\mathrm{fx} \mathrm{~d}=\mathrm{F}_{\mathrm{ig}} \cdot \frac{2}{\mathrm{~F}_{\mathrm{tg}}}
$$

ex $3.888889 \mathrm{~m}=35 \mathrm{~N} \cdot \frac{2}{18 \mathrm{~N}}$
2) Depth of Groove given Allowable Static Thrust Load and Allowable Impact Loading on Groove
$\mathrm{fx} \mathrm{d}=\frac{\mathrm{F}_{\mathrm{ig}} \cdot 2}{\mathrm{~F}_{\mathrm{tg}}}$
Open Calculator
ex $3.888889 \mathrm{~m}=\frac{35 \mathrm{~N} \cdot 2}{18 \mathrm{~N}}$
3) Depth of Groove given allowable Static Thrust Load on Groove
$f \times d=\frac{f_{s} \cdot \Phi \cdot F_{t g}}{C \cdot D \cdot \pi \cdot \sigma_{s y}}$
Open Calculator
ex
$0.283228 \mathrm{~m}=\frac{2.8 \cdot 0.85 \cdot 18 \mathrm{~N}}{1.486 \cdot 3.6 \mathrm{~m} \cdot \pi \cdot 9 \mathrm{~Pa}}$
4) Depth of Groove given Allowable Static Thrust Load on Ring which is Subject to Shear
$\mathrm{fx} d=\frac{\mathrm{F}_{\mathrm{ig}} \cdot \frac{2}{\mathrm{~F}_{\mathrm{tg}}}}{1000}$
Open Calculator
ex $0.003889 \mathrm{~m}=\frac{35 \mathrm{~N} \cdot \frac{2}{18 \mathrm{~N}}}{1000}$

Factor of Safety

5) Factor of Safety given allowable Static Thrust Load on Groove
$f x f_{s}=\frac{C \cdot D \cdot d \cdot \pi \cdot \sigma_{s y}}{F_{t g} \cdot \Phi}$
ex $34.60113=\frac{1.486 \cdot 3.6 \mathrm{~m} \cdot 3.5 \mathrm{~m} \cdot \pi \cdot 9 \mathrm{~Pa}}{18 \mathrm{~N} \cdot 0.85}$
6) Factor of Safety given Allowable Static Thrust Load on Ring

ex $78.77936=\frac{1.486 \cdot 3.6 \mathrm{~m} \cdot 5 \mathrm{~m} \cdot \pi \cdot 6 \mathrm{~N}}{6.4 \mathrm{~N}}$

Load Capacities of Groove

7) Allowable impact loading on groove
$f \mathbf{f x} \mathrm{~F}_{\mathrm{ig}}=\frac{\mathrm{F}_{\mathrm{tg}} \cdot \mathrm{d}}{2}$
Open Calculator
ex $31.5 \mathrm{~N}=\frac{18 \mathrm{~N} \cdot 3.5 \mathrm{~m}}{2}$
8) Allowable Static Thrust Load given Allowable Impact Loading on Groove
$\mathrm{f}_{\mathrm{x}}^{\mathrm{F}} \mathrm{F}_{\mathrm{tg}}=\mathrm{F}_{\mathrm{ig}} \cdot \frac{2}{\mathrm{~d}}$
Open Calculator
ex $20 \mathrm{~N}=35 \mathrm{~N} \cdot \frac{2}{3.5 \mathrm{~m}}$
9) Allowable Static Thrust Load on Groove
$f \mathrm{~F} \mathrm{~F}_{\mathrm{tg}}=\frac{\mathrm{C} \cdot \mathrm{D} \cdot \mathrm{d} \cdot \pi \cdot \sigma_{\mathrm{sy}}}{\mathrm{f}_{\mathrm{s}} \cdot \Phi}$
ex $222.4358 \mathrm{~N}=\frac{1.486 \cdot 3.6 \mathrm{~m} \cdot 3.5 \mathrm{~m} \cdot \pi \cdot 9 \mathrm{~Pa}}{2.8 \cdot 0.85}$
10) Shaft Diameter given allowable Static Thrust Load on Groove
$\mathrm{fx} \mathrm{D}=\frac{\mathrm{F}_{\mathrm{tg}} \cdot \mathrm{f}_{\mathrm{s}} \cdot \Phi}{\mathrm{C} \cdot \mathrm{d} \cdot \pi \cdot \sigma_{\mathrm{sy}}}$
Open Calculator [3]
ex $0.29132 \mathrm{~m}=\frac{18 \mathrm{~N} \cdot 2.8 \cdot 0.85}{1.486 \cdot 3.5 \mathrm{~m} \cdot \pi \cdot 9 \mathrm{~Pa}}$
11) Tensile Yield Strength of Groove Material given allowable Static Thrust Load on Groove
$f \mathrm{fx} \sigma_{\mathrm{sy}}=\frac{\mathrm{f}_{\mathrm{s}} \cdot \Phi \cdot \mathrm{F}_{\mathrm{tg}}}{\mathrm{C} \cdot \mathrm{D} \cdot \pi \cdot \mathrm{d}}$
Open Calculator
$\mathrm{ex} 0.7283 \mathrm{~Pa}=\frac{2.8 \cdot 0.85 \cdot 18 \mathrm{~N}}{1.486 \cdot 3.6 \mathrm{~m} \cdot \pi \cdot 3.5 \mathrm{~m}}$

Load Capacities of Retaining Rings $\underbrace{〔}$

12) Allowable impact loading on ring
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{F}} \mathrm{ir}=\frac{\mathrm{F}_{\mathrm{rT}} \cdot \mathrm{t}}{2}$
ex $16 \mathrm{~N}=\frac{6.4 \mathrm{~N} \cdot 5 \mathrm{~m}}{2}$
13) Allowable Static Thrust Load on Ring given Allowable Impact Loading E
fx $\mathrm{F}_{\mathrm{rT}}=\mathrm{F}_{\mathrm{ir}} \cdot \frac{2}{\mathrm{t}}$
Open Calculator
ex $2.8 \mathrm{~N}=7 \mathrm{~N} \cdot \frac{2}{5 \mathrm{~m}}$
14) Allowable static thrust load on ring which is subject to shear
$f \mathrm{f} \mathrm{F}_{\mathrm{rT}}=\frac{\mathrm{C} \cdot \mathrm{D} \cdot \mathrm{t} \cdot \pi \cdot \tau_{\mathrm{s}}}{\mathrm{F}_{\mathrm{s}}}$
$\operatorname{ex} 289.7632 \mathrm{~N}=\frac{1.486 \cdot 3.6 \mathrm{~m} \cdot 5 \mathrm{~m} \cdot \pi \cdot 6 \mathrm{~N}}{1.74}$
15) Ring Thickness given Allowable Impact Loading on Ring

$$
\mathrm{fx} t=\mathrm{F}_{\mathrm{ir}} \cdot \frac{2}{\mathrm{~F}_{\mathrm{rT}}}
$$

ex $2.1875 \mathrm{~m}=7 \mathrm{~N} \cdot \frac{2}{6.4 \mathrm{~N}}$
16) Ring Thickness given Allowable Static Thrust Load on Ring which is subject to Shear
$\mathrm{fx} \mathrm{t}=\mathrm{F}_{\mathrm{rT}} \cdot \frac{\mathrm{F}_{\mathrm{s}}}{\mathrm{C} \cdot \mathrm{D} \cdot \pi \cdot \tau_{\mathrm{s}}}$
Open Calculator
ex $0.110435 \mathrm{~m}=6.4 \mathrm{~N} \cdot \frac{1.74}{1.486 \cdot 3.6 \mathrm{~m} \cdot \pi \cdot 6 \mathrm{~N}}$
17) Shaft Diameter given Allowable Static Thrust Load on Ring which is subject to Shear
$\mathrm{fx} \mathrm{D}=\mathrm{F}_{\mathrm{rT}} \cdot \frac{\mathrm{F}_{\mathrm{s}}}{\mathrm{C} \cdot \mathrm{t} \cdot \pi \cdot \tau_{\mathrm{s}}}$
Open Calculator
ex $0.079513 \mathrm{~m}=6.4 \mathrm{~N} \cdot \frac{1.74}{1.486 \cdot 5 \mathrm{~m} \cdot \pi \cdot 6 \mathrm{~N}}$
18) Shear Strength of Ring Material given Allowable Static Thrust Load on Ring

ex $0.132522 \mathrm{~N}=6.4 \mathrm{~N} \cdot \frac{1.74}{1.486 \cdot 5 \mathrm{~m} \cdot \pi \cdot 3.6 \mathrm{~m}}$

Variables Used

- C Conversion factor
- d Depth of groove (Meter)
- D Shaft Diameter (Meter)
- Fig $_{\text {ig }}$ Allowable impact loading on groove (Newton)
- $\mathrm{F}_{\text {ir }}$ Allowable Impact Loading on Ring (Newton)
- $\mathrm{F}_{\text {rT }}$ Allowable Static Thrust Load on Ring (Newton)
- $\mathbf{f}_{\mathbf{s}}$ Factor of Safety
- $\mathrm{F}_{\mathbf{S}}$ Safety Factor
- $\mathrm{F}_{\text {tg }}$ Allowable static thrust load on groove wall (Newton)
- t Ring thickness (Meter)
- $\sigma_{\text {sy }}$ Tensile Yield Strength of Groove Material (Pascal)
- $\mathbf{T}_{\mathbf{s}}$ Shear Strength of Metal Ring (Newton)
- Ф Reduction Factor

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

Check other formula lists

- Design of Clamp and Muff Coupling Formulas
- Design of Cotter Joint Formulas
- Design of Knuckle Joint Formulas ${ }^{2}$
- Packing Formulas
- Retaining Rings and Circlips Formulas
- Riveted Joints Formulas
- Seals Formulas
- Threaded Bolted Joints Formulas
- Welded Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

2/16/2024 | 8:36:17 AM UTC
Please leave your feedback here...

