
calculatoratoz.com

Surveying Curves Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Surveying Curves Formulas

Surveying Curves $\mathbb{\leftrightarrow}$

Offsets from Long Chord

1) Mid Ordinate given $0 \times \sqrt{ }$
fx
Open Calculator

$$
\mathrm{L}_{\mathrm{mo}}=-\sqrt{\mathrm{R}_{\text {Mid Ordinate }}^{2}-\mathrm{x}^{2}}+\mathrm{O}_{\mathrm{x}}+\mathrm{R}_{\text {Mid Ordinate }}
$$

ex $2.012659 \mathrm{~m}=-\sqrt{(40 \mathrm{~m})^{2}-(3 \mathrm{~m})^{2}}+1.9 \mathrm{~m}+40 \mathrm{~m}$
2) Mid Ordinate when Offsets from Long Chord is Used for Setting Out
$\mathrm{L}_{\text {mo }}=\mathrm{R}_{\text {Mid Ordinate }}-\sqrt{\mathrm{R}_{\text {Mid Ordinate }}^{2}-\left(\frac{\mathrm{C}}{2}\right)^{2}}$
ex $17.03399 \mathrm{~m}=40 \mathrm{~m}-\sqrt{(40 \mathrm{~m})^{2}-\left(\frac{65.5 \mathrm{~m}}{2}\right)^{2}}$
3) Offset at Distance x from Mid-Point
$\mathrm{O}_{\mathrm{x}}=\sqrt{\mathrm{R}_{\text {Mid Ordinate }}^{2}-\mathrm{x}^{2}}-\left(\mathrm{R}_{\text {Mid Ordinate }}-\mathrm{L}_{\mathrm{mo}}\right)$
ex $1.887341 \mathrm{~m}=\sqrt{(40 \mathrm{~m})^{2}-(3 \mathrm{~m})^{2}}-(40 \mathrm{~m}-2 \mathrm{~m})$
Perpendicular Offsets from Tangents
4) Approximate Equation for Offset at Distance x from Mid-Point
$f \mathrm{fx} \mathrm{O}_{\mathrm{x}}=\frac{\mathrm{x}^{2}}{2 \cdot \mathrm{R}}$
Open Calculator
$\mathrm{ex} 1.956522 \mathrm{~m}=\frac{(3 \mathrm{~m})^{2}}{2 \cdot 2.3 \mathrm{~m}}$
5) Radius given Approximate Equation for Offset
$f \mathrm{fx}=\frac{\mathrm{x}^{2}}{\mathrm{O}_{\mathrm{x}} \cdot 2}$
Open Calculator
ex $2.368421 \mathrm{~m}=\frac{(3 \mathrm{~m})^{2}}{1.9 \mathrm{~m} \cdot 2}$

Setting Out Curve using Offsets from Chords ©

6) Deflection Angle of First Chord
$f \mathbf{f x} \delta 1=\left(\frac{\mathrm{C}_{1}}{2 \cdot \mathrm{R}_{\text {Mid Ordinate }}}\right)$
Open Calculator
ex $0.0625=\left(\frac{5 \mathrm{~m}}{2 \cdot 40 \mathrm{~m}}\right)$
7) First Offset given First Chord Length
$f_{\mathrm{x}} \mathrm{O}_{1}=\frac{\mathrm{C}_{1}^{2}}{2} \cdot \mathrm{R}_{\text {Mid Ordinate }}$
Open Calculator
$\mathrm{ex} 500 \mathrm{~m}=\frac{(5 \mathrm{~m})^{2}}{2} \cdot 40 \mathrm{~m}$
8) Length of First Chord for given Deflection Angle of First Chord
$\mathrm{fx} \mathrm{C}_{1}=\delta 1 \cdot 2 \cdot \mathrm{R}_{\text {Mid Ordinate }}$
Open Calculator
ex $5 \mathrm{~m}=0.0625 \cdot 2 \cdot 40 \mathrm{~m}$
9) N-th Offset using Chords Produced
$f \times \mathrm{O}_{\mathrm{n}}=\left(\frac{\mathrm{C}_{\mathrm{n}}}{2} \cdot \mathrm{R}_{\text {Mid Ordinate }}\right) \cdot\left(\mathrm{C}_{\mathrm{n}-1}+\mathrm{C}_{\mathrm{n}}\right)$
ex $1920 \mathrm{~m}=\left(\frac{8 \mathrm{~m}}{2} \cdot 40 \mathrm{~m}\right) \cdot(4 \mathrm{~m}+8 \mathrm{~m})$

10) Second Offset using Chord Lengths

$f \mathrm{f} \mathrm{O}_{2}=\left(\frac{\mathrm{C}_{2}}{2} \cdot \mathrm{R}_{\text {Mid Ordinate }}\right) \cdot\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
ex $298.2 \mathrm{~m}=\left(\frac{2.1 \mathrm{~m}}{2} \cdot 40 \mathrm{~m}\right) \cdot(5 \mathrm{~m}+2.1 \mathrm{~m})$

Simple Circular Curve

11) Apex Distance
$f \mathbf{x} L_{\text {ad }}=R_{\text {Curve }} \cdot\left(\sec \left(\frac{\Delta}{2}\right)-1\right)$
Open Calculator
ex $37.13781 \mathrm{~m}=200 \mathrm{~m} \cdot\left(\sec \left(\frac{65^{\circ}}{2}\right)-1\right)$
12) Deflection Angle given Length of Curve
f. $\Delta=\frac{\mathrm{L}_{\text {Curve }}}{\mathrm{R}_{\text {Curve }}}$

Open Calculator
ex $42.97183^{\circ}=\frac{150 \mathrm{~m}}{200 \mathrm{~m}}$
13) Length of Curve
$f \times L_{\text {Curve }}=R_{\text {Curve }} \cdot \Delta$
ex $226.8928 \mathrm{~m}=200 \mathrm{~m} \cdot 65^{\circ}$
14) Length of Curve if 20 m Chord Definition
$f x L_{\text {Curve }}=20 \cdot \frac{\Delta}{\mathrm{D}} \cdot\left(\frac{180}{\pi}\right)$
ex $61.90476 \mathrm{~m}=20 \cdot \frac{65^{\circ}}{21} \cdot\left(\frac{180}{\pi}\right)$
15) Length of Curve if 30 m Chord Definition
$f \mathrm{fx} \mathrm{L}_{\text {Curve }}=30 \cdot \frac{\Delta}{\mathrm{D}} \cdot\left(\frac{180}{\pi}\right)$
Open Calculator
ex $92.85714 \mathrm{~m}=30 \cdot \frac{65^{\circ}}{21} \cdot\left(\frac{180}{\pi}\right)$
16) Mid Ordinate
$f \mathrm{fx} \mathrm{L}_{\text {mo }}=\mathrm{R}_{\text {Curve }} \cdot\left(1-\cos \left(\frac{\Delta}{2}\right)\right)$
Open Calculator
ex $31.32171 \mathrm{~m}=200 \mathrm{~m} \cdot\left(1-\cos \left(\frac{65^{\circ}}{2}\right)\right)$
17) Radius given Apex Distance \longleftarrow
$\mathrm{fx}_{\mathrm{x}} \mathrm{R}_{\text {Curve }}=\frac{\mathrm{L}_{\mathrm{ad}}}{\sec \left(\frac{\Delta}{2}\right)-1}$

$$
\operatorname{ex} 118.4776 \mathrm{~m}=\frac{22 \mathrm{~m}}{\sec \left(\frac{65^{\circ}}{2}\right)-1}
$$

18) Radius of Curve given Length
$f \times R_{\text {Curve }}=\frac{L_{\text {Curve }}}{\Delta}$
ex $132.221 \mathrm{~m}=\frac{150 \mathrm{~m}}{65^{\circ}}$
19) Radius of Curve given Long Chord
$f \mathrm{f} \mathrm{R}_{\text {Curve }}=\frac{\mathrm{C}}{2 \cdot \sin \left(\frac{\Delta}{2}\right)}$
ex $60.95296 \mathrm{~m}=\frac{65.5 \mathrm{~m}}{2 \cdot \sin \left(\frac{65^{\circ}}{2}\right)}$

20) Radius of Curve given Tangent $\boxed{\Omega}$

$f \times R_{\text {Curve }}=\frac{T}{\tan \left(\frac{\Delta}{2}\right)}$

$$
\operatorname{ex} 199.9779 \mathrm{~m}=\frac{127.4 \mathrm{~m}}{\tan \left(\frac{65^{\circ}}{2}\right)}
$$

21) Tangent Length

$\mathrm{fx} \mathrm{T}=\mathrm{R}_{\text {Curve }} \cdot \tan \left(\frac{\Delta}{2}\right)$
ex $127.4141 \mathrm{~m}=200 \mathrm{~m} \cdot \tan \left(\frac{65^{\circ}}{2}\right)$

Variables Used

- C Length of Long Chord (Meter)
- \mathbf{C}_{1} First Sub Chord (Meter)
- \mathbf{C}_{2} Second Sub Chord (Meter)
- \mathbf{C}_{n} Last Sub Chord (Meter)
- $\mathrm{C}_{\mathrm{n}-1}$ Sub Chord $\mathrm{n}-1$ (Meter)
- D Angle for Arc
- Lad Apex Distance (Meter)
- $L_{\text {Curve }}$ Length of Curve (Meter)
- $L_{m o}$ Mid Ordinate (Meter)
- \mathbf{O}_{1} First Offset (Meter)
- O_{2} Second Offset (Meter)
- \mathbf{O}_{n} Offset n (Meter)
- $\mathbf{O}_{\mathbf{x}}$ Offset at x (Meter)
- R Radius of Curve (Meter)
- $\mathbf{R}_{\text {Curve }}$ Curve Radius (Meter)
- $\mathbf{R}_{\text {Mid }}$ Ordinate Radius of Curve for Mid Ordinate (Meter)
- T Tangent Length (Meter)
- X Distance x (Meter)
- Δ Deflection Angle (Degree)
- $\mathbf{\delta 1}$ Deflection Angle 1

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: sec, sec(Angle)

Trigonometric secant function

- Function: sin, sin(Angle)

Trigonometric sine function

- Function: sqrt, sqrt(Number)

Square root function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

Check other formula lists

- Photogrammetry and Stadia Surveying Formulas $\sqrt{ }$
- Compass Surveying Formulas © Transition Curves Surveying
- Electromagnetic Distance Measurement Formulas
- Measurement of Distance with Tapes Formulas
- Surveying Curves Formulas
- Theory of Errors Formulas

Formulas

- Traversing Formulas
- Vertical Control Formulas
- Vertical Curves Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

