

Torsion of Leaf Spring Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 39 Torsion of Leaf Spring Formulas

Torsion of Leaf Spring 🕑

1) Central Deflection of Leaf Spring

$$\mathbf{x} \ 0.642857 \mathrm{mm} = \frac{\mathrm{(6mm)}^2}{8 \cdot 7\mathrm{mm}}$$

2) Central Deflection of Leaf Spring for given Modulus of Elasticity

fx
$$\delta = rac{\sigma \cdot l^2}{4 \cdot E \cdot t_p}$$
 Open Calculator C

ex
$$11.25$$
mm = $\frac{15$ MPa $\cdot (6$ mm)²}{4 \cdot 10MPa $\cdot 1.2$ mm

3) Load at One End given Bending Moment at Center of Leaf Spring 🗹

fx
$$L = \frac{2 \cdot M_b}{l}$$

ex $1.733333 kN = \frac{2 \cdot 5200 N^* mm}{6 mm}$

Open Calculator

4) Maximum Bending Stress Developed given Central Deflection of Leaf Spring

$$fx \sigma = \frac{4 \cdot E \cdot t_p \cdot \delta}{l^2}$$

$$fx \sigma = \frac{4 \cdot 10MPa \cdot 1.2mm \cdot 4mm}{(6mm)^2}$$
Open Calculator

5) Maximum Bending Stress Developed given Radius of Plate to which they are Bent

fx
$$\sigma = rac{\mathrm{E} \cdot \mathrm{t_p}}{2 \cdot \mathrm{R}}$$
 Open Calculator C

$$\mathbf{ex} \ 0.857143 \mathrm{MPa} = \frac{10 \mathrm{MPa} \cdot 1.2 \mathrm{mm}}{2 \cdot 7 \mathrm{mm}}$$

6) Maximum Bending Stress Developed in Plates given Point Load at Center

$$\sigma = \frac{3 \cdot w \cdot l}{2 \cdot n \cdot B \cdot t_p^2}$$
Open Calculator C
$$1750.837 MPa = \frac{3 \cdot 251 kN \cdot 6mm}{2 \cdot 8 \cdot 112 mm \cdot (1.2mm)^2}$$

7) Modulus of Elasticity given Central Deflection of Leaf Spring 🕑

fx
$$\mathbf{E} = rac{\mathbf{\sigma}\cdot\mathbf{l}^2}{4\cdot\delta\cdot\mathbf{t}_{\mathrm{p}}}$$
 Open Calculator C

ex
$$28.125$$
MPa $= \frac{15$ MPa $\cdot (6$ mm $)^2}{4 \cdot 4$ mm $\cdot 1.2$ mm

8) Modulus of Elasticity given Radius of Plate to which they are Bent 子

fx
$$\mathbf{E} = \frac{2 \cdot \mathbf{\sigma} \cdot \mathbf{R}}{\mathbf{t}_{p}}$$

ex $175 \text{MPa} = \frac{2 \cdot 15 \text{MPa} \cdot 7 \text{mm}}{1.2 \text{mm}}$

9) Moment of Inertia of each Leaf Spring Plate 🕑

fx
$$I = \frac{B \cdot t_p^3}{12}$$

ex $0.016128g^*mm^2 = \frac{112mm \cdot (1.2mm)^3}{12}$

10) Number of Plates given Maximum Bending Stress Developed in Plates

$$fx n = \frac{3 \cdot w \cdot l}{2 \cdot \sigma \cdot B \cdot t_p^2}$$

$$ex 933.7798 = \frac{3 \cdot 251 \text{kN} \cdot 6\text{mm}}{2 \cdot 15\text{MPa} \cdot 112\text{mm} \cdot (1.2\text{mm})^2}$$
Open Calculator C

11) Number of Plates in Leaf Spring given Total Resisting Moment by n Plates

12) Point Load Acting at Center of Spring given Maximum Bending Stress Developed in Plates

fx
$$\mathbf{w} = rac{2 \cdot \mathbf{n} \cdot \mathbf{B} \cdot \mathbf{t}_{\mathrm{p}}^2 \cdot \mathbf{\sigma}}{3 \cdot 1}$$

Open Calculator 🕑

5/17

ex
$$2.1504$$
kN = $\frac{2 \cdot 8 \cdot 112$ mm $\cdot (1.2$ mm) $^2 \cdot 15$ MPa $3 \cdot 6$ mm

13) Point Load at Center of Spring Load given Bending Moment at Center of Leaf Spring

15) Radius of Plate to which they are Bent given Central Deflection of Leaf Spring

fx
$$\mathbf{R} = \frac{\mathbf{l}^2}{\mathbf{8} \cdot \mathbf{\delta}}$$

ex $1.125 \text{mm} = \frac{(6 \text{mm})^2}{\mathbf{8} \cdot 4 \text{mm}}$

Open Calculator 🕑

Open Calculator

16) Total Resisting Moment by n Plates

$$\label{eq:Mt} \begin{split} & \overbrace{M_t = \frac{n \cdot \sigma \cdot B \cdot t_p^2}{6}} \\ & \overbrace{M_t = \frac{n \cdot \sigma \cdot B \cdot t_p^2}{6}} \\ & \underbrace{3.2256N^*m = \frac{8 \cdot 15MPa \cdot 112mm \cdot (1.2mm)^2}{6}} \\ \end{split}$$

17) Total Resisting Moment by n Plates given Bending Moment on each Plate

fx
$$[\mathrm{M_t} = \mathrm{n} \cdot \mathrm{M_b}]$$

ex $41.6N^*m = 8 \cdot 5200N^*mm$

Bending Moment 🗹

18) Bending Moment at Center given Point Load Acting at Center of Spring Load

19) Bending Moment at Center of Leaf Spring 🕑

20) Bending Moment on each Plate given Total Resisting Moment by n Plates

$$\mathbf{fx} \mathbf{M}_{b} = \frac{\mathbf{\sigma} \cdot \mathbf{B} \cdot \mathbf{t}_{p}^{2}}{6}$$

$$\mathbf{ex} 403.2N^{*}mm = \frac{15MPa \cdot 112mm \cdot (1.2mm)^{2}}{6}$$

22) Maximum Bending Moment Developed in Plate given Bending Moment on Single Plate

fx
$$\sigma = rac{6 \cdot M_b}{B \cdot t_p^2}$$
 Open Calculator $ar{P}$

ex 193.4524MPa =
$$\frac{6 \cdot 5200 \text{N} \cdot \text{mm}}{112 \text{mm} \cdot (1.2 \text{mm})^2}$$

23) Maximum Bending Moment Developed in Plate given Total Resisting Moment by n Plates

Span of Spring 🕑

24) Span of Leaf Spring given Central Deflection of Leaf Spring 🛃

fx
$$l = \sqrt{\frac{\delta \cdot 4 \cdot E \cdot t_p}{\sigma}}$$

ex $3.577709 \text{mm} = \sqrt{\frac{4 \text{mm} \cdot 4 \cdot 10 \text{MPa} \cdot 1.2 \text{mm}}{15 \text{MPa}}}$

Open Calculator

25) Span of Spring given Bending Moment at Center of Leaf Spring 🗹

29) Span of Spring given Maximum Bending Stress Developed in Plates 🗹

$$fx \boxed{l = \frac{2 \cdot n \cdot B \cdot t_p^2 \cdot \sigma}{3 \cdot w}}$$
Open Calculator
$$ex 0.051404 mm = \frac{2 \cdot 8 \cdot 112 mm \cdot (1.2 mm)^2 \cdot 15 MPa}{3 \cdot 251 kN}$$

Thickness of Plate

30) Thickness of each Plate given Bending Moment on Single Plate

ex 8.121653mm =
$$\left(\frac{12 \cdot 5 \text{g}^* \text{mm}^2}{112 \text{mm}}\right)^{\frac{1}{3}}$$

32) Thickness of each Plate given Total Resisting Moment by n Plates

fx
$$t_{p} = \sqrt{rac{6 \cdot M_{b}}{\sigma \cdot n \cdot B}}$$
 Open Calculator G

ex
$$1.523624$$
mm = $\sqrt{rac{6 \cdot 5200$ N*mm}{15MPa \cdot 8 \cdot 112}mm}

33) Thickness of Plate given Central Deflection of Leaf Spring 🕑

fx
$$\mathbf{t}_{\mathrm{p}} = rac{\sigma \cdot \mathbf{l}^2}{4 \cdot \mathrm{E} \cdot \delta}$$

ex
$$3.375$$
mm = $\frac{15$ MPa $\cdot (6$ mm)²}{4 \cdot 10MPa $\cdot 4$ mm

34) Thickness of Plate given Maximum Bending Stress Developed in Plate

fx
$$\mathbf{t}_{p} = \sqrt{\frac{3 \cdot w \cdot l}{2 \cdot n \cdot B \cdot \sigma}}$$

ex $12.96458 \text{mm} = \sqrt{\frac{3 \cdot 251 \text{kN} \cdot 6 \text{mm}}{2 \cdot 8 \cdot 112 \text{mm} \cdot 15 \text{MPa}}}$

Open Calculator

Open Calculator 🕑

35) Thickness of Plate given Radius of Plate to which they are Bent 🕑

38) Width of each Plate given Total Resisting Moment by n Plates 🕑

14/17

Variables Used

- **B** Width of Full Size Bearing Plate (*Millimeter*)
- E Modulus of Elasticity Leaf Spring (Megapascal)
- I Moment of Inertia (Gram Square Millimeter)
- | Span of Spring (Millimeter)
- L Load at One End (Kilonewton)
- Mb Bending Moment in Spring (Newton Millimeter)
- Mt Total Resisting Moments (Newton Meter)
- **n** Number of Plates
- R Radius of Plate (Millimeter)
- tp Thickness of Plate (Millimeter)
- W Point Load at Center of Spring (Kilonewton)
- δ Deflection of Centre of Leaf Spring (Millimeter)
- **σ** Maximum Bending Stress in Plates (Megapascal)

Constants, Functions, Measurements used

- Function: **sqrt**, sqrt(Number) Square root function
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Pressure in Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN) Force Unit Conversion
- Measurement: Moment of Inertia in Gram Square Millimeter (g*mm²) Moment of Inertia Unit Conversion
- Measurement: Moment of Force in Newton Millimeter (N*mm) Moment of Force Unit Conversion
- Measurement: Bending Moment in Newton Meter (N*m) Bending Moment Unit Conversion

Check other formula lists

- Coil Spring Formulas
- Helical Springs Formulas C
- Torsion of Leaf Spring
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/30/2023 | 2:50:25 AM UTC

Please leave your feedback here ...

