
calculatoratoz.com

unitsconverters.com

Torsion of Leaf Spring Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 39 Torsion of Leaf Spring Formulas

Torsion of Leaf Spring ©

1) Central Deflection of Leaf Spring
$\boldsymbol{f x} \delta=\frac{\mathrm{l}^{2}}{8 \cdot \mathrm{R}}$
Open Calculator
ex $0.642857 \mathrm{~mm}=\frac{(6 \mathrm{~mm})^{2}}{8 \cdot 7 \mathrm{~mm}}$
2) Central Deflection of Leaf Spring for given Modulus of Elasticity
$\mathbf{f x} \delta=\frac{\sigma \cdot \mathrm{l}^{2}}{4 \cdot \mathrm{E} \cdot \mathrm{t}_{\mathrm{p}}}$
Open Calculator
$\mathrm{ex} 11.25 \mathrm{~mm}=\frac{15 \mathrm{MPa} \cdot(6 \mathrm{~mm})^{2}}{4 \cdot 10 \mathrm{MPa} \cdot 1.2 \mathrm{~mm}}$
3) Load at One End given Bending Moment at Center of Leaf Spring

ex
$1.733333 \mathrm{kN}=\frac{2 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{6 \mathrm{~mm}}$
4) Maximum Bending Stress Developed given Central Deflection of Leaf Spring

5) Maximum Bending Stress Developed given Radius of Plate to which they are Bent $\boxed{\boxed{ } 1}$
$\mathrm{fx}_{\mathrm{x}} \sigma=\frac{\mathrm{E} \cdot \mathrm{t}_{\mathrm{p}}}{2 \cdot \mathrm{R}}$
Open Calculator
ex $0.857143 \mathrm{MPa}=\frac{10 \mathrm{MPa} \cdot 1.2 \mathrm{~mm}}{2 \cdot 7 \mathrm{~mm}}$
6) Maximum Bending Stress Developed in Plates given Point Load at Center
$f \mathrm{x} \sigma=\frac{3 \cdot \mathrm{w} \cdot \mathrm{l}}{2 \cdot \mathrm{n} \cdot \mathrm{B} \cdot \mathrm{t}_{\mathrm{p}}^{2}}$
ex $1750.837 \mathrm{MPa}=\frac{3 \cdot 251 \mathrm{kN} \cdot 6 \mathrm{~mm}}{2 \cdot 8 \cdot 112 \mathrm{~mm} \cdot(1.2 \mathrm{~mm})^{2}}$
7) Modulus of Elasticity given Central Deflection of Leaf Spring

$$
f x=\frac{\sigma \cdot l^{2}}{4 \cdot \delta \cdot t_{p}}
$$

ex $28.125 \mathrm{MPa}=\frac{15 \mathrm{MPa} \cdot(6 \mathrm{~mm})^{2}}{4 \cdot 4 \mathrm{~mm} \cdot 1.2 \mathrm{~mm}}$
8) Modulus of Elasticity given Radius of Plate to which they are Bent

$$
\mathrm{fx} \mathrm{E}=\frac{2 \cdot \sigma \cdot \mathrm{R}}{\mathrm{t}_{\mathrm{p}}}
$$

ex $175 \mathrm{MPa}=\frac{2 \cdot 15 \mathrm{MPa} \cdot 7 \mathrm{~mm}}{1.2 \mathrm{~mm}}$
9) Moment of Inertia of each Leaf Spring Plate

$0.016128 \mathrm{~g}^{*} \mathrm{~mm}^{2}=\frac{112 \mathrm{~mm} \cdot(1.2 \mathrm{~mm})^{3}}{12}$
10) Number of Plates given Maximum Bending Stress Developed in Plates E

ex $933.7798=\frac{3 \cdot 251 \mathrm{kN} \cdot 6 \mathrm{~mm}}{2 \cdot 15 \mathrm{MPa} \cdot 112 \mathrm{~mm} \cdot(1.2 \mathrm{~mm})^{2}}$
11) Number of Plates in Leaf Spring given Total Resisting Moment by n Plates
$\mathrm{fx} \mathrm{n}=\frac{6 \cdot \mathrm{M}_{\mathrm{b}}}{\sigma \cdot \mathrm{B} \cdot \mathrm{t}_{\mathrm{p}}^{2}}$
ex $12.89683=\frac{6 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{15 \mathrm{MPa} \cdot 112 \mathrm{~mm} \cdot(1.2 \mathrm{~mm})^{2}}$
12) Point Load Acting at Center of Spring given Maximum Bending Stress Developed in Plates $\boxed{\Omega}$
$f \mathrm{x} w=\frac{2 \cdot \mathrm{n} \cdot \mathrm{B} \cdot \mathrm{t}_{\mathrm{p}}^{2} \cdot \sigma}{3 \cdot \mathrm{l}}$
ex $2.1504 \mathrm{kN}=\frac{2 \cdot 8 \cdot 112 \mathrm{~mm} \cdot(1.2 \mathrm{~mm})^{2} \cdot 15 \mathrm{MPa}}{3 \cdot 6 \mathrm{~mm}}$
13) Point Load at Center of Spring Load given Bending Moment at Center of Leaf Spring

ex
$3.466667 \mathrm{kN}=\frac{4 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{6 \mathrm{~mm}}$
14) Radius of Plate to which they are Bent
$f \mathrm{fx}=\frac{\mathrm{E} \cdot \mathrm{t}_{\mathrm{p}}}{2 \cdot \sigma}$
ex $0.4 \mathrm{~mm}=\frac{10 \mathrm{MPa} \cdot 1.2 \mathrm{~mm}}{2 \cdot 15 \mathrm{MPa}}$
15) Radius of Plate to which they are Bent given Central Deflection of Leaf Spring
$\mathrm{fx} R=\frac{l^{2}}{8 \cdot \delta}$
ex $1.125 \mathrm{~mm}=\frac{(6 \mathrm{~mm})^{2}}{8 \cdot 4 \mathrm{~mm}}$
16) Total Resisting Moment by n Plates
$f \mathrm{x} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{n} \cdot \sigma \cdot \mathrm{B} \cdot \mathrm{t}_{\mathrm{p}}^{2}}{6}$
$3.2256 \mathrm{~N}^{*} \mathrm{~m}=\underline{8 \cdot 15 \mathrm{MPa} \cdot 112 \mathrm{~mm} \cdot(1.2 \mathrm{~mm})^{2}}$
17) Total Resisting Moment by n Plates given Bending Moment on each Plate
$\mathrm{fx}_{\mathrm{x}} \mathrm{M}_{\mathrm{t}}=\mathrm{n} \cdot \mathrm{M}_{\mathrm{b}}$
ex $41.6 \mathrm{~N}^{*} \mathrm{~m}=8 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}$

Bending Moment

18) Bending Moment at Center given Point Load Acting at Center of Spring Load
$f \mathrm{f} \mathrm{M}_{\mathrm{b}}=\frac{\mathrm{w} \cdot 1}{4}$
ex $376500 \mathrm{~N}^{*} \mathrm{~mm}=\frac{251 \mathrm{kN} \cdot 6 \mathrm{~mm}}{4}$
19) Bending Moment at Center of Leaf Spring
$f \mathrm{f} \mathrm{M}_{\mathrm{b}}=\frac{\mathrm{L} \cdot \mathrm{l}}{2}$
ex $19200 \mathrm{~N}^{*} \mathrm{~mm}=\frac{6.4 \mathrm{kN} \cdot 6 \mathrm{~mm}}{2}$
20) Bending Moment on each Plate given Total Resisting Moment by n Plates
$f \mathrm{fx} \mathrm{M}_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{t}}}{\mathrm{n}}$
ex $9750 \mathrm{~N}^{*} \mathrm{~mm}=\frac{78 \mathrm{~N}^{*} \mathrm{~m}}{8}$
21) Bending Moment on Single Plate
$\mathrm{fx}_{\mathrm{x}} \mathrm{M}_{\mathrm{b}}=\frac{\sigma \cdot \mathrm{B} \cdot \mathrm{t}_{\mathrm{p}}^{2}}{6}$
$403.2 \mathrm{~N}^{*} \mathrm{~mm}=\frac{15 \mathrm{MPa} \cdot 112 \mathrm{~mm} \cdot(1.2 \mathrm{~mm})^{2}}{6}$
22) Maximum Bending Moment Developed in Plate given Bending Moment on Single Plate
$\mathrm{fx} \sigma=\frac{6 \cdot \mathrm{M}_{\mathrm{b}}}{\mathrm{B} \cdot \mathrm{t}_{\mathrm{p}}^{2}}$
ex $193.4524 \mathrm{MPa}=\frac{6 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{112 \mathrm{~mm} \cdot(1.2 \mathrm{~mm})^{2}}$
23) Maximum Bending Moment Developed in Plate given Total Resisting Moment by n Plates
$\mathrm{fx} \sigma=\frac{6 \cdot \mathrm{M}_{\mathrm{b}}}{\mathrm{B} \cdot \mathrm{n} \cdot \mathrm{t}_{\mathrm{p}}^{2}}$
Open Calculator
ex $24.18155 \mathrm{MPa}=\frac{6 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{112 \mathrm{~mm} \cdot 8 \cdot(1.2 \mathrm{~mm})^{2}}$

Span of Spring

24) Span of Leaf Spring given Central Deflection of Leaf Spring
$\mathrm{fx} \mathrm{l}=\sqrt{\frac{\delta \cdot 4 \cdot \mathrm{E} \cdot \mathrm{t}_{\mathrm{p}}}{\sigma}}$
ex $3.577709 \mathrm{~mm}=\sqrt{\frac{4 \mathrm{~mm} \cdot 4 \cdot 10 \mathrm{MPa} \cdot 1.2 \mathrm{~mm}}{15 \mathrm{MPa}}}$
25) Span of Spring given Bending Moment at Center of Leaf Spring

Open Calculator
$\mathrm{f}_{\mathrm{x}} \mathrm{l}=\frac{2 \cdot \mathrm{M}_{\mathrm{b}}}{\mathrm{L}}$
ex $1.625 \mathrm{~mm}=\frac{2 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{6.4 \mathrm{kN}}$
26) Span of Spring given Bending Moment at Center of Leaf Spring and Point Load at Center

Open Calculator $\boxed{\square}$
ex $0.082869 \mathrm{~mm}=\frac{4 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{251 \mathrm{kN}}$
27) Span of Spring given Central Deflection of Leaf Spring
$f \mathbf{f}=\sqrt{8 \cdot R \cdot \delta}$
Open Calculator
ex $14.96663 \mathrm{~mm}=\sqrt{8 \cdot 7 \mathrm{~mm} \cdot 4 \mathrm{~mm}}$
28) Span of Spring given Maximum Bending Stress
$\mathrm{fx}=\sqrt{\frac{4 \cdot \mathrm{E} \cdot \mathrm{t}_{\mathrm{p}} \cdot \delta}{\sigma}}$
Open Calculator
ex $3.577709 \mathrm{~mm}=\sqrt{\frac{4 \cdot 10 \mathrm{MPa} \cdot 1.2 \mathrm{~mm} \cdot 4 \mathrm{~mm}}{15 \mathrm{MPa}}}$
29) Span of Spring given Maximum Bending Stress Developed in Plates
$\mathrm{fx}=\frac{2 \cdot \mathrm{n} \cdot \mathrm{B} \cdot \mathrm{t}_{\mathrm{p}}^{2} \cdot \sigma}{3 \cdot \mathrm{w}}$

Open Calculator

$0.051404 \mathrm{~mm}=\frac{2 \cdot 8 \cdot 112 \mathrm{~mm} \cdot(1.2 \mathrm{~mm})^{2} \cdot 15 \mathrm{MPa}}{3 \cdot 251 \mathrm{kN}}$

Thickness of Plate

30) Thickness of each Plate given Bending Moment on Single Plate
$f x t_{p}=\sqrt{\frac{6 \cdot M_{b}}{\sigma \cdot B}}$
Open Calculator
ex $4.309458 \mathrm{~mm}=\sqrt{\frac{6 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{15 \mathrm{MPa} \cdot 112 \mathrm{~mm}}}$
31) Thickness of each Plate given Moment of Inertia of each Plate
$f \mathrm{f} \mathrm{t}_{\mathrm{p}}=\left(\frac{12 \cdot \mathrm{I}}{\mathrm{B}}\right)^{\frac{1}{3}}$
Open Calculator
$\operatorname{ex} 8.121653 \mathrm{~mm}=\left(\frac{12 \cdot 5 \mathrm{~g}^{*} \mathrm{~mm}^{2}}{112 \mathrm{~mm}}\right)^{\frac{1}{3}}$
32) Thickness of each Plate given Total Resisting Moment by n Plates
$\mathrm{fx}_{\mathrm{x}} \mathrm{t}_{\mathrm{p}}=\sqrt{\frac{6 \cdot \mathrm{M}_{\mathrm{b}}}{\sigma \cdot \mathrm{n} \cdot \mathrm{B}}}$
Open Calculator
ex $1.523624 \mathrm{~mm}=\sqrt{\frac{6 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{15 \mathrm{MPa} \cdot 8 \cdot 112 \mathrm{~mm}}}$
33) Thickness of Plate given Central Deflection of Leaf Spring
$f x t_{p}=\frac{\sigma \cdot l^{2}}{4 \cdot E \cdot \delta}$
Open Calculator
ex $3.375 \mathrm{~mm}=\frac{15 \mathrm{MPa} \cdot(6 \mathrm{~mm})^{2}}{4 \cdot 10 \mathrm{MPa} \cdot 4 \mathrm{~mm}}$
34) Thickness of Plate given Maximum Bending Stress Developed in Plate E
$f \mathrm{fx}=\sqrt{\frac{3 \cdot \mathrm{w} \cdot \mathrm{l}}{2 \cdot \mathrm{n} \cdot \mathrm{B} \cdot \sigma}}$
ex $12.96458 \mathrm{~mm}=\sqrt{\frac{3 \cdot 251 \mathrm{kN} \cdot 6 \mathrm{~mm}}{2 \cdot 8 \cdot 112 \mathrm{~mm} \cdot 15 \mathrm{MPa}}}$
35) Thickness of Plate given Radius of Plate to which they are Bent
$f_{x} t_{p}=\frac{2 \cdot \sigma \cdot R}{E}$
Open Calculator
ex $21 \mathrm{~mm}=\frac{2 \cdot 15 \mathrm{MPa} \cdot 7 \mathrm{~mm}}{10 \mathrm{MPa}}$

Width of Plate

36) Width of each Plate given Bending Moment on Single Plate
$\mathrm{fx} \mathrm{B}=\frac{6 \cdot \mathrm{M}_{\mathrm{b}}}{\sigma \cdot \mathrm{t}_{\mathrm{p}}^{2}}$
Open Calculator
ex $1444.444 \mathrm{~mm}=\frac{6 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{15 \mathrm{MPa} \cdot(1.2 \mathrm{~mm})^{2}}$
37) Width of each Plate given Moment of Inertia of each Plate
$\mathrm{fx} \mathrm{B}=\frac{12 \cdot \mathrm{I}}{\mathrm{t}_{\mathrm{p}}^{3}}$
Open Calculator
ex $34722.22 \mathrm{~mm}=\frac{12 \cdot 5 \mathrm{~g}^{*} \mathrm{~mm}^{2}}{(1.2 \mathrm{~mm})^{3}}$
38) Width of each Plate given Total Resisting Moment by n Plates

$$
\mathrm{fx}=\frac{6 \cdot \mathrm{M}_{\mathrm{b}}}{\sigma \cdot \mathrm{n} \cdot \mathrm{t}_{\mathrm{p}}^{2}}
$$

$180.5556 \mathrm{~mm}=\frac{6 \cdot 5200 \mathrm{~N}^{*} \mathrm{~mm}}{15 \mathrm{MPa} \cdot 8 \cdot(1.2 \mathrm{~mm})^{2}}$
39) Width of Plates given Maximum Bending Stress Developed in Plates
$f x B=\frac{3 \cdot w \cdot l}{2 \cdot n \cdot \sigma \cdot t_{p}^{2}}$
$\mathrm{ex}^{\mathbf{x}} 13072.92 \mathrm{~mm}=\frac{3 \cdot 251 \mathrm{kN} \cdot 6 \mathrm{~mm}}{2 \cdot 8 \cdot 15 \mathrm{MPa} \cdot(1.2 \mathrm{~mm})^{2}}$

Variables Used

- B Width of Full Size Bearing Plate (Millimeter)
- E Modulus of Elasticity Leaf Spring (Megapascal)
- I Moment of Inertia (Gram Square Millimeter)
- I Span of Spring (Millimeter)
- L Load at One End (Kilonewton)
- $\mathbf{M}_{\mathbf{b}}$ Bending Moment in Spring (Newton Millimeter)
- $\mathbf{M}_{\mathbf{t}}$ Total Resisting Moments (Newton Meter)
- \mathbf{n} Number of Plates
- R Radius of Plate (Millimeter)
- $\mathbf{t}_{\mathbf{p}}$ Thickness of Plate (Millimeter)
- w Point Load at Center of Spring (Kilonewton)
- $\boldsymbol{\delta}$ Deflection of Centre of Leaf Spring (Millimeter)
- $\boldsymbol{\sigma}$ Maximum Bending Stress in Plates (Megapascal)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Moment of Inertia in Gram Square Millimeter ($\mathrm{g}^{*} \mathrm{~mm}^{2}$)

Moment of Inertia Unit Conversion

- Measurement: Moment of Force in Newton Millimeter (N*mm)

Moment of Force Unit Conversion $\sqrt{ }$

- Measurement: Bending Moment in Newton Meter (N*m) Bending Moment Unit Conversion

Check other formula lists

- Coil Spring Formulas
- Helical Springs Formulas
- Torsion of Leaf Spring Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

