
calculatoratoz.com

unitsconverters.com

Water Power Engineering Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Water Power Engineering Formulas

Water Power Engineering ©

1) Average Load given Load Factor for Turbo-generators
$f x L_{\text {Avg }}=L F \cdot P_{L}$
ex $400 \mathrm{~W}=0.1 \cdot 4 \mathrm{~kW}$
2) Energy Actually Produced given Plant Factor $\boxed{\Omega}$
$f \times E=p \cdot w$
ex $250 \mathrm{~kW}^{*} \mathrm{~h}=0.5 \cdot 500 \mathrm{~kW}{ }^{*} \mathrm{~h}$
3) Load Factor for Turbo-generators
fx $L F=\frac{L_{\text {Avg }}}{P_{L}}$
Open Calculator
ex $0.1=\frac{400 \mathrm{~W}}{4 \mathrm{~kW}}$
4) Maximum Energy Produced using Plant Factor

Open Calculator
ex $500 \mathrm{~kW}^{*} \mathrm{~h}=\frac{250 \mathrm{~kW}^{*} \mathrm{~h}}{0.5}$
5) Maximum Power Developed given Utilization Factor
$\mathrm{fx} \mathrm{P}=\mathrm{UF} \cdot \mathrm{m}$
Open Calculator
ex $5000 \mathrm{~kW}=10 \cdot 500 \mathrm{~kW}$
6) Peak Load given Load Factor for Turbo-Generators
$f \times P_{L}=\frac{L_{\text {Avg }}}{L F}$
Open Calculator 〔
$\mathrm{ex} 4 \mathrm{~kW}=\frac{400 \mathrm{~W}}{0.1}$
7) Plant Factor

$\mathrm{fx}=\frac{\mathrm{E}}{\mathrm{w}}$	Open Calculatorを
$\mathrm{ex} 0.5=\frac{250 \mathrm{~kW}^{*} \mathrm{~h}}{500 \mathrm{~kW}^{*} \mathrm{~h}}$	

8) Total Power that can be Developed given Utilization Factor
fx $\mathrm{m}=\frac{\mathrm{P}}{\mathrm{UF}}$
ex $500 \mathrm{~kW}=\frac{5000 \mathrm{~kW}}{10}$
9) Utilization Factor
$f_{\mathrm{x}} \mathrm{UF}=\frac{\mathrm{P}}{\mathrm{m}}$
$\mathrm{ex} 10=\frac{5000 \mathrm{~kW}}{500 \mathrm{~kW}}$

Assessment of Available Power ©

10) Amount of Hydropower

$$
f \times P=\frac{\gamma_{\mathrm{f}} \cdot \mathrm{q}_{\text {flow }} \cdot\left(\mathrm{h}_{\text {location }}-\mathrm{H}\right) \cdot \eta}{1000}
$$

ex $0.113011 \mathrm{~kW}=\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot(2.9 \mathrm{~m}-2.3 \mathrm{~m}) \cdot 0.80}{1000}$
11) Effective Head given Energy through Hydraulic Turbines

\square

ex $1.099925 \mathrm{~m}=\frac{538.65 \mathrm{~N}^{*} \mathrm{~m}}{9.81 \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot 0.80 \cdot 2.6 \mathrm{~s}}$
12) Efficiency of Hydropower Station given Amount of Hydropower
$\mathrm{fx}_{\mathrm{x}} \eta=\frac{\mathrm{P}}{9.81 \cdot \mathrm{q}_{\text {flow }} \cdot\left(\mathrm{h}_{\text {location }}-\mathrm{H}\right)}$
ex $5.09684=\frac{0.72 \mathrm{~kW}}{9.81 \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot(2.9 \mathrm{~m}-2.3 \mathrm{~m})}$

Open Calculator
13) Efficiency of Hydropower Station given Energy through Hydraulic Turbines
$\mathrm{fx} \eta=\frac{E}{9.81 \cdot \mathrm{q}_{\text {flow }} \cdot\left(\mathrm{H}-\mathrm{h}_{\mathrm{f}}\right) \cdot \mathrm{T}_{\mathrm{w}}}$
ex $0.799945=\frac{538.65 \mathrm{~N}^{*} \mathrm{~m}}{9.81 \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot(2.3 \mathrm{~m}-1.2 \mathrm{~m}) \cdot 2.6 \mathrm{~s}}$
14) Energy through Hydraulic Turbines
$\mathrm{fx}_{\mathrm{x}} \mathrm{E}=\left(9.81 \cdot \mathrm{q}_{\mathrm{flow}} \cdot\left(\mathrm{H}-\mathrm{h}_{\mathrm{f}}\right) \cdot \eta \cdot \mathrm{T}_{\mathrm{w}}\right)$
Open Calculator ©
ex $538.6867 \mathrm{~N}^{*} \mathrm{~m}=\left(9.81 \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot(2.3 \mathrm{~m}-1.2 \mathrm{~m}) \cdot 0.80 \cdot 2.6 \mathrm{~s}\right)$
15) Head given Amount of Hydropower
$f \times H=\left(\frac{P}{9.81 \cdot q_{\text {flow }} \cdot \eta}\right)+h_{\text {location }}$
ex $6.72263 \mathrm{~m}=\left(\frac{0.72 \mathrm{~kW}}{9.81 \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot 0.80}\right)+2.9 \mathrm{~m}$
16) Head given Energy through Hydraulic Turbines
fx $H=\left(\frac{E}{9.81 \cdot \mathrm{q}_{\text {flow }} \cdot \eta \cdot \mathrm{T}_{\mathrm{w}}}\right)+\mathrm{h}_{\mathrm{f}}$
Open Calculator
$\operatorname{ex} 2.299925 \mathrm{~m}=\left(\frac{538.65 \mathrm{~N}^{*} \mathrm{~m}}{9.81 \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot 0.80 \cdot 2.6 \mathrm{~s}}\right)+1.2 \mathrm{~m}$
17) Head Loss given Amount of Hydropower
fx $\mathrm{h}_{\mathrm{f}}=\left(\left(\frac{\mathrm{P}}{9.81 \cdot \mathrm{q}_{\text {flow }} \cdot \eta}\right)-\mathrm{H}\right)$
Open Calculator
ex $1.52263 \mathrm{~m}=\left(\left(\frac{0.72 \mathrm{~kW}}{9.81 \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot 0.80}\right)-2.3 \mathrm{~m}\right)$
18) Head Loss given Energy through Hydraulic Turbines
$f \times \mathrm{h}_{\mathrm{f}}=-\left(\left(\frac{\mathrm{E}}{9.81 \cdot \mathrm{q}_{\text {flow }} \cdot \eta \cdot \mathrm{T}_{\mathrm{w}}}\right)-\mathrm{H}\right)$
Open Calculator
ex $1.200075 \mathrm{~m}=-\left(\left(\frac{538.65 \mathrm{~N}^{*} \mathrm{~m}}{9.81 \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot 0.80 \cdot 2.6 \mathrm{~s}}\right)-2.3 \mathrm{~m}\right)$
19) Period of Flow given Energy through Hydraulic Turbines
fx $\mathrm{T}_{\mathrm{w}}=\frac{\mathrm{E}}{9.81 \cdot \mathrm{q}_{\text {flow }} \cdot\left(\mathrm{H}-\mathrm{h}_{\mathrm{f}}\right) \cdot \eta}$
Open Calculator
ex $2.599823 \mathrm{~s}=\frac{538.65 \mathrm{~N}^{*} \mathrm{~m}}{9.81 \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot(2.3 \mathrm{~m}-1.2 \mathrm{~m}) \cdot 0.80}$
单

20) Rate of Flow of Water given Energy through Hydraulic Turbines $\boxed{\Omega}$

$$
f_{\mathrm{x}} \mathrm{q}_{\text {flow }}=\frac{\mathrm{E}}{9.81 \cdot\left(\mathrm{H}-\mathrm{h}_{\mathrm{f}}\right) \cdot \eta \cdot \mathrm{T}_{\mathrm{w}}}
$$

ex $23.99836 \mathrm{~m}^{3} / \mathrm{s}=\frac{538.65 \mathrm{~N}^{*} \mathrm{~m}}{9.81 \cdot(2.3 \mathrm{~m}-1.2 \mathrm{~m}) \cdot 0.80 \cdot 2.6 \mathrm{~s}}$

Variables Used

- E Energy Actually Produced (Kilowatt-Hour)
- E Energy through Hydraulic Turbines (Newton Meter)
- H Head of Water (Meter)
- H Effective Head (Meter)
- $\mathbf{h}_{\mathbf{f}}$ Head Loss (Meter)
- $\mathbf{h}_{\text {location }}$ Head Loss due to Friction (Meter)
- LAvg Average Load (Watt)
- LF Load Factor
- m Total Power that can be Developed (Kilowatt)
- p Plant Factor
- P Max Power Developed (Kilowatt)
- P Amount of Hydropower (Kilowatt)
- \mathbf{P}_{L} Peak Load (Kilowatt)
- Gflow Rate of Flow (Cubic Meter per Second)
- $\mathbf{T}_{\mathbf{w}}$ Time Period of Progressive Wave (Second)
- UF Utilization Factor
- w Max Energy Produced (Kilowatt-Hour)
- Y_{f} Specific Weight of Liquid (Kilonewton per Cubic Meter)
- $\boldsymbol{\eta}$ Efficiency of Hydropower

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Energy in Kilowatt-Hour (kW*h), Newton Meter (N*m)

Energy Unit Conversion

- Measurement: Power in Watt (W), Kilowatt (kW)

Power Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion

Check other formula lists

- Buoyancy And Floatation Formulas
- Culverts Formulas
- Equations of Motion and Energy Equation Formulas $\sqrt{\square}$
- Flow of Compressible Fluids Formulas \longleftarrow
- Flow Over Notches and Weirs Formulas
- Fluid Pressure and Its Measurement Formulas
- Fundamentals of Fluid Flow Formulas [
- Hydroelectric Power Generation Formulas
- Hydrostatic Forces on Surfaces Formulas
- Impact of Free Jets Formulas
- Impulse Momentum Equation and its Applications Formulas
- Liquids in Relative Equilibrium Formulas
- Most Economical or Most Efficient Section of Channel Formulas
- Non-uniform Flow in Channels Formulas ${ }^{3}$
- Properties of Fluid Formulas $\sqrt{ }$
- Thermal Expansion of Pipe and Pipe Stresses Formulas
- Uniform Flow in Channels Formulas
- Water Power Engineering Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

