

Dash Pot Mechanism Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 36 Dash Pot Mechanism Formulas

Dash Pot Mechanism

1) Length of Piston for Pressure Drop over Piston

$$\mathbf{L}_{\mathrm{P}} = rac{\Delta \mathrm{Pf}}{\left(6 \cdot \mu \cdot rac{\mathrm{v}_{\mathrm{piston}}}{\mathrm{C}_{\mathrm{R}}^{3}}
ight) \cdot \left(0.5 \cdot \mathrm{D} + \mathrm{C}_{\mathrm{R}}
ight)}$$

Open Calculator

$$= \frac{33 \text{Pa}}{\left(6 \cdot 10.2 \text{P} \cdot \frac{0.045 \text{m/s}}{\left(0.45 \text{m}\right)^3}\right) \cdot \left(0.5 \cdot 3.5 \text{m} + 0.45 \text{m}\right)}$$

2) Length of Piston for Shear Force Resisting Motion of Piston

$$ext{L}_{P} = rac{ ext{Fs}}{\pi \cdot \mu \cdot v_{piston} \cdot \left(1.5 \cdot \left(rac{D}{C_{R}}
ight)^{2} + 4 \cdot \left(rac{D}{C_{R}}
ight)}
ight)}$$

Open Calculator

$$= \frac{90 \text{N}}{\pi \cdot 10.2 \text{P} \cdot 0.045 \text{m/s} \cdot \left(1.5 \cdot \left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)^2 + 4 \cdot \left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)\right)}$$

3) Length of Piston for Vertical Upward Force on Piston

$$\mathbf{F}_{\mathbf{v}}$$

$$\mathrm{L_{P}} = rac{\mathrm{F_{v}}}{\mathrm{v_{piston}} \cdot \pi \cdot \mu \cdot \left(0.75 \cdot \left(\left(rac{\mathrm{D}}{\mathrm{C_{R}}}
ight)^{3}
ight) + 1.5 \cdot \left(\left(rac{\mathrm{D}}{\mathrm{C_{R}}}
ight)^{2}
ight)}$$

$$= \frac{320 \text{N}}{0.045 \text{m/s} \cdot \pi \cdot 10.2 \text{P} \cdot \left(0.75 \cdot \left(\left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)^3\right) + 1.5 \cdot \left(\left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)^2\right)\right)}$$

4) Pressure Drop over Length of Piston given Vertical Upward Force on Piston

 $\Delta ext{Pf} = rac{ ext{F}_{ ext{v}}}{0.25 \cdot \pi \cdot ext{D} \cdot ext{D}}$

Open Calculator 🗗

ex
$$33.26014$$
Pa = $\frac{320N}{0.25 \cdot \pi \cdot 3.5m \cdot 3.5m}$

5) Pressure Drop over Piston

 $\Delta Pf = \left(6 \cdot \mu \cdot v_{piston} \cdot rac{L_P}{C_D^3}
ight) \cdot (0.5 \cdot D + C_R)$

Open Calculator

6) Pressure Gradient given Rate of Flow

 $\mathrm{d} p | \mathrm{d} r = \left(12 \cdot rac{\mu}{\mathrm{C_p^3}}
ight) \cdot \left(\left(rac{\mathrm{Q}}{\pi} \cdot \mathrm{D}
ight) + \mathrm{v_{piston}} \cdot 0.5 \cdot \mathrm{C_R}
ight)$

Open Calculator

7) Pressure Gradient given Velocity of Flow in Oil Tank

 $\mathrm{d} p | \mathrm{d} r = rac{\mu \cdot 2 \cdot \left(u_{Oiltank} - \left(v_{piston} \cdot rac{R}{C_{H}}
ight)
ight)}{R \cdot R - C_{H} \cdot R}$

$$\boxed{ \mathbf{ex} \\ 50.97758 \mathrm{N/m^3} = \frac{10.2 \mathrm{P} \cdot 2 \cdot \left(12 \mathrm{m/s} - \left(0.045 \mathrm{m/s} \cdot \frac{0.7 \mathrm{m}}{50 \mathrm{mm}}\right)\right)}{0.7 \mathrm{m} \cdot 0.7 \mathrm{m} - 50 \mathrm{mm} \cdot 0.7 \mathrm{m} } }$$

8) Shear Force Resisting Motion of Piston

 $ag{Fs} = \pi \cdot L_{P} \cdot \mu \cdot v_{piston} \cdot \left(1.5 \cdot \left(rac{D}{C_{R}}
ight)^{2} + 4 \cdot \left(rac{D}{C_{R}}
ight)
ight)$

Open Calculator

$$87.85464 \text{N} = \pi \cdot 5 \text{m} \cdot 10.2 \text{P} \cdot 0.045 \text{m/s} \cdot \left(1.5 \cdot \left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)^2 + 4 \cdot \left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)\right)$$

9) Total Forces

fx $T_{
m f}=F_{
m v}+F_{
m S}$

Open Calculator

Open Calculator 🚰

410N = 320N + 90N

10) Velocity of Flow in Oil Tank

 $\overline{u_{\mathrm{Oiltank}} = \left(\mathrm{dp} | \mathrm{dr} \cdot 0.5 \cdot rac{\mathrm{R} \cdot \mathrm{R} - \mathrm{C_H} \cdot \mathrm{R}}{\mu}
ight) - \left(v_{\mathrm{piston}} \cdot rac{\mathrm{R}}{\mathrm{C_H}}
ight)}$

ex

fx

$$\boxed{12.75235 \text{m/s} = \left(60 \text{N/m}^3 \cdot 0.5 \cdot \frac{0.7 \text{m} \cdot 0.7 \text{m} - 50 \text{mm} \cdot 0.7 \text{m}}{10.2 \text{P}}\right) - \left(0.045 \text{m/s} \cdot \frac{0.7 \text{m}}{50 \text{mm}}\right)}$$

11) Vertical Force given Total Force

fx $\mathrm{F_v} = \mathrm{Fs} - \mathrm{F_{Total}}$

Open Calculator

87.5N = 90N - 2.5N

12) Vertical Upward Force on Piston given Piston Velocity

12, vertical opward i orde on Fiston given Fiston velocity

$$\boxed{ \begin{aligned} \mathbf{F}_{v} &= L_{P} \cdot \pi \cdot \mu \cdot v_{piston} \cdot \left(0.75 \cdot \left(\left(\frac{D}{C_{R}}\right)^{3}\right) + 1.5 \cdot \left(\left(\frac{D}{C_{R}}\right)^{2}\right) \right) \end{aligned}}$$

ex

$$\boxed{319.849 \text{N} = 5 \text{m} \cdot \pi \cdot 10.2 \text{P} \cdot 0.045 \text{m/s} \cdot \left(0.75 \cdot \left(\left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)^3\right) + 1.5 \cdot \left(\left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)^2\right)\right)}$$

Dynamic Viscosity

13) Dynamic Viscosity for Pressure Reduction over Length of Piston

 $\mu = rac{\Delta Pf}{\left(6 \cdot v_{piston} \cdot rac{L_P}{C_p^3}
ight) \cdot (0.5 \cdot D + C_R)}$

Open Calculator

14) Dynamic Viscosity for Shear Force Resisting Motion of Piston 🗗

$$= \frac{90 \text{N}}{\pi \cdot 5 \text{m} \cdot 0.045 \text{m/s} \cdot \left(1.5 \cdot \left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)^2 + 4 \cdot \left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)\right)}$$

15) Dynamic Viscosity given Rate of Flow

 $\mu = rac{\mathrm{d}p |\mathrm{d}r \cdot rac{C_R^3}{12}}{\left(rac{\mathrm{Q}}{\pi} \cdot \mathrm{D}
ight) + v_{\mathrm{piston}} \cdot 0.5 \cdot C_R}$

Open Calculator 🗗

16) Dynamic Viscosity given Velocity of Flow in Oil Tank

Open Calculator

$$\boxed{ 10.8076 P = 0.5 \cdot 60 N/m^3 \cdot \frac{0.7 m \cdot 0.7 m - 50 mm \cdot 0.7 m}{12 m/s + \left(0.045 m/s \cdot \frac{0.7 m}{50 mm}\right) } }$$

Velocity of Piston 🗗

17) Velocity of Piston for Shear Force Resisting Motion of Piston

18) Velocity of Piston for Vertical Upward Force on Piston

fx

Open Calculator

$$F_{
m piston} = rac{{
m F}_{
m v}}{{
m L}_{
m P} \cdot \pi \cdot \mu \cdot \left(0.75 \cdot \left(\left(rac{
m D}{{
m C}_{
m R}}
ight)^3
ight) + 1.5 \cdot \left(\left(rac{
m D}{{
m C}_{
m R}}
ight)^2
ight)}$$

19) Velocity of Piston given Velocity of Flow in Oil Tank

fx

Open Calculator

$$\mathbf{v}_{\mathrm{piston}} = \left(\left(0.5 \cdot \mathrm{dp} | \mathrm{dr} \cdot \frac{\mathbf{R} \cdot \mathbf{R} - \mathbf{C}_{\mathrm{H}} \cdot \mathbf{R}}{\mu} \right) - \mathbf{u}_{\mathrm{Oiltank}}
ight) \cdot \left(\frac{\mathbf{C}_{\mathrm{H}}}{\mathbf{R}}
ight)
ight)$$

ex

$$\boxed{0.098739 \text{m/s} = \left(\left(0.5 \cdot 60 \text{N/m}^3 \cdot \frac{0.7 \text{m} \cdot 0.7 \text{m} - 50 \text{mm} \cdot 0.7 \text{m}}{10.2 \text{P}} \right) - 12 \text{m/s} \right) \cdot \left(\frac{50 \text{mm}}{0.7 \text{m}} \right)}$$

20) Velocity of Pistons for Pressure Drop over Length of Piston

 $m v_{piston} = rac{1}{\left(6 \cdot \mu \cdot rac{L_{
m P}}{C^3}
ight) \cdot \left(0.5 \cdot D + C_{
m R}
ight)}$

When Piston Velocity is Negligible to Average Velocity of Oil in Clearance Space ☑

21) Clearance given Pressure Drop over Length of Piston

$$\mathrm{C_R} = \left(3\cdot\mathrm{D}\cdot\mu\cdot\mathrm{v_{piston}}\cdotrac{\mathrm{L_P}}{\Delta\mathrm{Pf}}
ight)^{rac{1}{3}}$$

Open Calculator 🗗

22) Clearance given Shear Stress

$$\mathrm{C_H} = \sqrt{1.5 \cdot \mathrm{D} \cdot \mu \cdot rac{v_{\mathrm{piston}}}{ au}}$$

Open Calculator

$$\mathbf{ex}$$
 50.87579mm = $\sqrt{1.5 \cdot 3.5 \text{m} \cdot 10.2 \text{P} \cdot \frac{0.045 \text{m/s}}{93.1 \text{Pa}}}$

23) Diameter of Piston for Pressure Drop over Length

$$ext{D} = \left(rac{\Delta ext{Pf}}{6 \cdot \mu \cdot ext{v}_{ ext{piston}} \cdot rac{ ext{L}_{ ext{P}}}{ ext{C}_{ ext{R}}^3}}
ight) \cdot 2$$

Open Calculator 🛂

$$4.367647 \mathrm{m} = \left(\frac{33 \mathrm{Pa}}{6 \cdot 10.2 \mathrm{P} \cdot 0.045 \mathrm{m/s} \cdot \frac{5 \mathrm{m}}{(0.45 \mathrm{m})^3}}\right) \cdot 2$$

24) Diameter of Piston given Shear Stress

$$D = rac{ au}{1.5 \cdot \mu \cdot rac{ ext{v}_{ ext{piston}}}{ ext{C}_{ ext{H}} \cdot ext{C}_{ ext{H}}}}$$

$$= \frac{93.1 Pa}{1.5 \cdot 10.2 P \cdot \frac{0.045 m/s}{50 mm \cdot 50 mm}}$$

25) Dynamic Viscosity for Pressure Drop over Length

 $\mu = rac{\Delta ext{Pf}}{\left(6 \cdot ext{v}_{ ext{piston}} \cdot rac{ ext{L}_{ ext{P}}}{ ext{C}_{ ext{R}}^3}
ight) \cdot (0.5 \cdot ext{D})}$

Open Calculator

ex
$$12.72857P = \frac{33Pa}{\left(6 \cdot 0.045 \text{m/s} \cdot \frac{5\text{m}}{(0.45\text{m})^3}\right) \cdot (0.5 \cdot 3.5\text{m})}$$

26) Dynamic Viscosity given Shear Stress in Piston

 $\mu = rac{ au}{1.5 \cdot \mathrm{D} \cdot rac{\mathrm{v}_{\mathrm{piston}}}{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{C}_{\mathrm{H}}}}$

Open Calculator 🚰

$$egin{aligned} \mathbf{ex} \ 9.851852P = rac{93.1Pa}{1.5 \cdot 3.5 ext{m} \cdot rac{0.045 ext{m/s}}{50 ext{mm} \cdot 50 ext{mm}} \end{aligned}$$

27) Dynamic Viscosity given Velocity of Fluid 🗗

 $\mu = \mathrm{dp} | \mathrm{dr} \cdot 0.5 \cdot \left(rac{\mathrm{R}^2 - \mathrm{C_H} \cdot \mathrm{R}}{\mathrm{u_{Fluid}}}
ight)$

Open Calculator

ex
$$0.455 ext{P} = 60 ext{N/m}^3 \cdot 0.5 \cdot \left(\frac{\left(0.7 ext{m} \right)^2 - 50 ext{mm} \cdot 0.7 ext{m}}{300 ext{m/s}}
ight)$$

28) Dynamic Viscosity given velocity of piston

 $\mu = rac{F_{Total}}{\pi \cdot v_{piston} \cdot L_{P} \cdot \left(0.75 \cdot \left(\left(rac{D}{C_{R}}
ight)^{3}
ight) + 1.5 \cdot \left(\left(rac{D}{C_{R}}
ight)^{2}
ight)
ight)}$

29) Length of Piston for Pressure Reduction over Length of Piston 🖒

 $\mathbf{L}_{\mathrm{P}} = rac{\Delta \mathrm{Pf}}{\left(6 \cdot \mu \cdot rac{\mathrm{v}_{\mathrm{piston}}}{\mathrm{C_{\mathrm{R}}^3}}
ight) \cdot (0.5 \cdot \mathrm{D})}$

Open Calculator

30) Pressure Drop over Lengths of Piston

 $\Delta ext{Pf} = \left(6 \cdot \mu \cdot v_{piston} \cdot rac{L_P}{C_R^3}
ight) \cdot (0.5 \cdot D)$

Open Calculator

31) Pressure Gradient given Velocity of Fluid

 $\mathrm{d} p | \mathrm{d} r = rac{u_{Oiltank}}{0.5 \cdot rac{R \cdot R - C_H \cdot R}{\mu}}$

Open Calculator

$$\boxed{ 53.8022 \text{N/m}^{_3} = \frac{12 \text{m/s}}{0.5 \cdot \frac{0.7 \text{m} \cdot 0.7 \text{m} - 50 \text{mm} \cdot 0.7 \text{m}}{10.2 \text{P}} } }$$

32) Velocity of Fluid

ex
$$13.38235 \mathrm{m/s} = 60 \mathrm{N/m^3 \cdot 0.5 \cdot \frac{0.7 \mathrm{m} \cdot 0.7 \mathrm{m} - 50 \mathrm{mm} \cdot 0.7 \mathrm{m}}{10.2 \mathrm{P}}}$$

33) Velocity of Piston for Pressure reduction over Length of Piston 🗗

 $extbf{v}_{ ext{piston}} = rac{\Delta ext{Pf}}{\left(3 \cdot \mu \cdot rac{ ext{Lp}}{ ext{C}_{ ext{R}}^3}
ight) \cdot (ext{D})}$

Open Calculator

$$\boxed{ 0.056155 \text{m/s} = \frac{33 \text{Pa}}{\left(3 \cdot 10.2 \text{P} \cdot \frac{5 \text{m}}{\left(0.45 \text{m}\right)^3}\right) \cdot \left(3.5 \text{m}\right) } }$$

34) Velocity of Piston given Shear Stress

Open Calculator 🚰

$$oxed{ex} 0.043464 ext{m/s} = rac{93.1 ext{Pa}}{1.5 \cdot 3.5 ext{m} \cdot rac{10.2 ext{P}}{50 ext{mm} \cdot 50 ext{mm}}}$$

When Shear Force is Negligible

35) Dynamic Viscosity for Total Force in piston

ex
$$0.100226 P = \frac{2.5 N}{0.75 \cdot \pi \cdot 0.045 m/s \cdot 5 m \cdot \left(\left(\frac{3.5 m}{0.45 m}\right)^3\right)}$$

36) Length of Piston for Total Force in Piston

$$\mathbf{L}_{\mathrm{P}} = rac{\mathbf{F}_{\mathrm{Total}}}{0.75 \cdot \pi \cdot \mu \cdot v_{\mathrm{piston}} \cdot \left(\left(rac{\mathrm{D}}{\mathrm{C}_{\mathrm{R}}}
ight)^{3}
ight)}$$

ex
$$4.913032 \text{m} = \frac{2.5 \text{N}}{0.75 \cdot \pi \cdot 10.2 \text{P} \cdot 0.045 \text{m/s} \cdot \left(\left(\frac{3.5 \text{m}}{0.45 \text{m}}\right)^3\right)}$$

Variables Used

- C_H Hydraulic Clearance (Millimeter)
- C_R Radial Clearance (Meter)
- **D** Diameter of Piston (*Meter*)
- dp|dr Pressure Gradient (Newton per Cubic Meter)
- F_{Total} Total Force in Piston (Newton)
- **F**_v Vertical Component of Force (Newton)
- **Fs** Shear Force (Newton)
- **Lp** Piston Length (*Meter*)
- Q Discharge in Laminar Flow (Cubic Meter per Second)
- R Horizontal Distance (Meter)
- Tf Total Force (Newton)
- **u**Fluid Fluid Velocity (Meter per Second)
- UOiltank Fluid Velocity in Oil Tank (Meter per Second)
- V_{piston} Velocity of Piston (Meter per Second)
- **APf** Pressure Drop due to Friction (Pascal)
- µ Dynamic Viscosity (Poise)
- τ Shear Stress (Pascal)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m), Millimeter (mm)
 Length Unit Conversion
- Measurement: Pressure in Pascal (Pa)

 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion
- Measurement: Dynamic Viscosity in Poise (P)
 Dynamic Viscosity Unit Conversion
- Measurement: Pressure Gradient in Newton per Cubic Meter (N/m³)
 Pressure Gradient Unit Conversion
- Measurement: Stress in Pascal (Pa)
 Stress Unit Conversion

Check other formula lists

- Dash Pot Mechanism Formulas
- Laminar Flow around a Sphere Stokes'
 Law Formulas
- Laminar Flow between Parallel Flat Plates,
 one plate moving and other at rest,
 Couette Flow Formulas
- Laminar Flow between Parallel Plates, both Plates at Rest Formulas
- Laminar Flow of Fluid in an Open Channel Formulas
- Measurement of Viscosity Viscometers Formulas
- Steady Laminar Flow in Circular Pipes Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/30/2024 | 6:51:34 AM UTC

Please leave your feedback here...

