

Force Exerted by Fluid Jet on Stationary Flat Plate Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 22 Force Exerted by Fluid Jet on Stationary Flat Plate Formulas

Force Exerted by Fluid Jet on Stationary Flat Plate

Flat Plate Inclined at an Angle to the Jet

1) Cross Sectional Area of Jet for given Dynamic Thrust Normal to Direction of Jet

$$\mathbf{f}_{\mathbf{A}} \mathbf{A}_{\mathrm{Jet}} = rac{\mathbf{F}_{\mathrm{Y}} \cdot [\mathrm{g}]}{\gamma_{\mathrm{f}} \cdot \mathrm{v}_{\mathrm{iet}}^2 \cdot \sin(\angle \mathrm{D}) \cdot \cos(\angle \mathrm{D})}$$

Open Calculator 🗗

$$= \frac{38 \mathrm{kN} \cdot [\mathrm{g}]}{9.81 \mathrm{kN/m^3} \cdot (12 \mathrm{m/s})^2 \cdot \sin(11°) \cdot \cos(11°)}$$

2) Cross Sectional Area of Jet for given Dynamic Thrust Parallel to Direction of Jet

$$\mathbf{K} \mathbf{A}_{\mathrm{Jet}} = rac{\mathbf{F}_{\mathrm{X}} \cdot [\mathrm{g}]}{\gamma_{\mathrm{f}} \cdot \mathrm{v}_{\mathrm{jet}}^2 \cdot \left(\sin(\angle \mathrm{D})
ight)^2}$$

Open Calculator

$$ext{ex} 1.944875 ext{m}^2 = rac{10.2 ext{kN} \cdot ext{[g]}}{9.81 ext{kN/m}^3 \cdot \left(12 ext{m/s}
ight)^2 \cdot \left(\sin(11\degree)
ight)^2}$$

3) Cross Sectional Area of Jet for given Thrust Exerted in Direction of Normal to Plate

 \mathbf{f} $\mathbf{A}_{\mathrm{Jet}} = rac{\mathbf{F}_{\mathrm{p}} \cdot [\mathrm{g}]}{\gamma_{\mathrm{f}} \cdot \mathrm{v}_{\mathrm{iet}}^2 \cdot (\sin(\angle \mathrm{D}))}$

Open Calculator

ex $1.41891 \text{m}^2 = \frac{39 \text{kN} \cdot [\text{g}]}{9.81 \text{kN/m}^3 \cdot (12 \text{m/s})^2 \cdot (\sin(11^\circ))}$

4) Discharge Flowing by Jet

fx $Q = Q_{x,y} + Q_{x,y}$

Open Calculator

 $1.02 \mathrm{m}^3/\mathrm{s} = 0.51 \mathrm{m}^3/\mathrm{s} + 0.51 \mathrm{m}^3/\mathrm{s}$

5) Discharge Flowing in Direction Normal to Plate

 $\mathbf{R} \mathbf{Q}_{\mathrm{x,y}} = \left(rac{\mathrm{Q}}{2}
ight) \cdot \left(1 + \cos(\angle \mathrm{D})
ight)$

Open Calculator

6) Discharge Flowing in Direction Parallel to Plate

ex $1.000722 \mathrm{m}^3/\mathrm{s} = \left(\frac{1.01 \mathrm{m}^3/\mathrm{s}}{2}\right) \cdot (1 + \cos(11^\circ))$

$$\mathbf{K} \mathbf{Q}_{\mathrm{x,y}} = \left(rac{\mathrm{Q}}{2}
ight) \cdot \left(1 - \cos(\angle \mathrm{D})
ight)$$

Open Calculator

 $0.009278 ext{m}^3/ ext{s} = \left(rac{1.01 ext{m}^3/ ext{s}}{2}
ight) \cdot (1-\cos(11°))$

7) Force Exerted by Jet in Direction Normal to Plate

 $\mathbf{F}_{\mathrm{p}} = \left(rac{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot \left(\mathrm{v}_{\mathrm{jet}}^{2}
ight)}{[\mathrm{g}]}
ight) \cdot \sin(\angle \mathrm{D})$

Open Calculator 🗗

 $(9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot (12))$

 $= 2.98306 \text{kN} = \left(\frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left((12 \text{m/s})^2 \right)}{[\text{g}]} \right) \cdot \sin(11^\circ)$

8) Force Exerted by Jet Normal to Direction of Jet Normal to Plate

 $\mathbf{F}_{Y} = \left(rac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]}
ight) \cdot \sin(\angle D) \cdot \cos(\angle D)$ Open Calculator \mathbf{F}_{Y}

0.81kN/m3.

 $32.37707 \mathrm{kN} = \left(rac{9.81 \mathrm{kN/m^3 \cdot 1.2m^2 \cdot (12m/s)^2}}{\mathrm{[g]}}
ight) \cdot \sin(11\degree) \cdot \cos(11\degree)$

9) Force Exerted by Jet Parallel to Direction of Jet Normal to Plate

 $\gamma_{
m f}\cdot {
m A}_{
m Tot}\cdot {
m V}^2$ Open Calculator lacksquare

 $oldsymbol{\mathbb{F}}_{ ext{X}} = \left(rac{\gamma_{ ext{f}} \cdot ext{A}_{ ext{Jet}} \cdot ext{v}_{ ext{jet}}^2}{| ext{g}|}
ight) \cdot \left(\sin(\angle ext{D})
ight)^2$

$$= \left(\frac{9.81 \mathrm{kN/m^3 \cdot 1.2m^2 \cdot (12m/s)^2}}{[\mathrm{g}]} \right) \cdot \left(\sin(11^\circ) \right)^2$$

10) Velocity of Fluid given Thrust Exerted Normal to Plate 🗗

 $\mathbf{f}_{\mathbf{z}} = \sqrt{rac{\mathrm{F}_{\mathrm{p}} \cdot [\mathrm{g}]}{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Tet}} \cdot (\sin(\angle \mathrm{D}))}}$

Open Calculator

 $ext{ex} 13.04873 ext{m/s} = \sqrt{rac{39 ext{kN} \cdot [ext{g}]}{9.81 ext{kN/m}^3 \cdot 1.2 ext{m}^2 \cdot (\sin(11\degree))}}$

11) Velocity of Fluid given Thrust Normal to Jet

 $\boxed{\textbf{k}} v_{jet} = \sqrt{\frac{F_Y \cdot [g]}{\gamma_f \cdot A_{Jet} \cdot (\sin(\angle D)) \cdot \cos(\angle D)}}$

Open Calculator 2

 $= \sqrt{\frac{38 \text{kN} \cdot [\text{g}]}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot (\sin(11°)) \cdot \cos(11°)} }$

12) Velocity of Fluid given Thrust Parallel to Jet

 $\left| \mathbf{x} \right| \mathrm{v}_{\mathrm{jet}} = \sqrt{rac{\mathrm{F}_{\mathrm{X}} \cdot [\mathrm{g}]}{\mathrm{v}_{\mathrm{g}} \cdot \mathrm{A}_{\mathrm{Tot}} \cdot (\sin(\angle \mathrm{D}))^2}}$

Open Calculator

 $ext{ex} 15.27694 ext{m/s} = \sqrt{rac{10.2 ext{kN} \cdot [ext{g}]}{9.81 ext{kN/m}^3 \cdot 1.2 ext{m}^2 \cdot (\sin(11\degree))^2}}$

Flat Plate Normal to the Jet

13) Area of Cross Section of Jet for Force Exerted by Stationary Plate on Jet

$$\mathbf{A}_{\mathrm{Jet}} = rac{\mathbf{F}_{\mathrm{St},\perp\mathrm{p}}\cdot[\mathrm{g}]}{\gamma_{\mathrm{f}}\cdot\mathrm{v}_{\mathrm{iet}}^{2}}$$

Open Calculator 🗗

$$= \frac{173 \mathrm{N} \cdot [\mathrm{g}]}{9.81 \mathrm{kN/m^3} \cdot (12 \mathrm{m/s})^2}$$

14) Area of Cross Section of Jet given Mass of Fluid 🔽

Open Calculator 🗗

$$ext{ex} 1.19959 ext{m}^2 = rac{14.4 ext{kg/s} \cdot [ext{g}]}{9.81 ext{kN/m}^3 \cdot 12 ext{m/s}}$$

15) Force Exerted by Stationary Plate on Jet

Open Calculator 🗗

ex
$$172.859 ext{N} = rac{9.81 ext{kN/m}^3 \cdot 1.2 ext{m}^2 \cdot \left((12 ext{m/s})^2
ight)}{[ext{g}]}$$

16) Mass Flow Rate of Fluid Striking Plate

 $\mathbf{m}_{\mathrm{pS}} = rac{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot \mathrm{v}_{\mathrm{jet}}}{[\mathrm{g}]}$

Open Calculator 🗗

 $ext{ex} 14.40492 ext{kg/s} = rac{9.81 ext{kN/m}^3 \cdot 1.2 ext{m}^2 \cdot 12 ext{m/s}}{[g]}$

17) Velocity for Force Exerted by Stationary Plate on Jet

Open Calculator

ex $12.00489 \mathrm{m/s} = \sqrt{rac{173 \mathrm{N} \cdot [\mathrm{g}]}{9.81 \mathrm{kN/m^3} \cdot 1.2 \mathrm{m^2}}}$

18) Velocity given Mass of Fluid 🗗

 $ext{ex} 11.9959 ext{m/s} = rac{14.4 ext{kg/s} \cdot [ext{g}]}{9.81 ext{kN/m}^3 \cdot 1.2 ext{m}^2}$

Jet Striking a Symmetrical Stationary Curved Vane at the Centre

19) Cross Sectional Area for Force Exerted on Plate in Direction of Flow of Jet

$$egin{aligned} \mathbf{K} egin{aligned} \mathbf{A}_{\mathrm{Jet}} &= rac{\mathbf{F}_{\mathrm{jet}} \cdot [\mathrm{g}]}{\gamma_{\mathrm{f}} \cdot \mathrm{v}_{\mathrm{jet}}^2 \cdot (1 + \cos(heta_{\mathrm{t}}))} \end{aligned}$$

Open Calculator 🗗

 $ext{ex} 1.196157 ext{m}^2 = rac{320 ext{N} \cdot [ext{g}]}{9.81 ext{kN/m}^3 \cdot (12 ext{m/s})^2 \cdot (1 + \cos(31\degree))}$

20) Force Exerted on Plate in Direction of Flow of Jet on Stationary Curved Vane

$$\mathbf{F}_{
m jet} = \left(rac{\gamma_{
m f} \cdot A_{
m Jet} \cdot v_{
m jet}^2}{[
m g]}
ight) \cdot \left(1 + \cos(heta_{
m t})
ight)$$

Open Calculator 🖒

$$= 2.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot (12 \text{m/s})^2 \over [\text{g}] \cdot (1 + \cos(31°))$$

21) Force Exerted on Plate in Direction of Flow of Jet when Theta is Zero

2

$$\mathbf{F}_{
m jet} = rac{2 \cdot \gamma_{
m f} \cdot A_{
m Jet} \cdot v_{
m jet}^2}{[
m g]}$$

Open Calculator 🚰

$$= \frac{2 \cdot 9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot (12 \text{m/s})^2}{[\text{g}]}$$

22) Velocity for Force Exerted on Plate in Direction of Flow of Jet

Open Calculator 🗗

$$= \sqrt{\frac{320 \mathrm{N} \cdot [\mathrm{g}]}{9.81 \mathrm{kN/m^3} \cdot 1.2 \mathrm{m^2} \cdot (1 + \cos(31°))} }$$

Variables Used

- ∠D Angle between Jet and Plate (Degree)
- A_{Jet} Cross Sectional Area of Jet (Square Meter)
- Fiet Force on Plate in Dir of Jet on Stat Curved Vane (Newton)
- F_p Force Exerted by Jet Normal to Plate (Kilonewton)
- $\mathbf{F_{St.\perp p}}$ Force by Stationary Plate on Jet \perp Plate (Newton)
- F_X Force by Jet Normal to Plate in X (Kilonewton)
- **F**_Y Force by Jet Normal to Plate in Y (Kilonewton)
- m_{pS} Mass Flow Rate of Jet (Kilogram per Second)
- Q Discharge by Jet (Cubic Meter per Second)
- Q_{x,y} Discharge in any Direction (Cubic Meter per Second)
- Viet Fluid Jet Velocity (Meter per Second)
- Vf Specific Weight of Liquid (Kilonewton per Cubic Meter)
- θ_t Half of Angle Between Two Tangent to Vane (Degree)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second²

 Gravitational acceleration on Farth
- Function: cos, cos(Angle)

 Trigonometric cosine function
- Function: sin, sin(Angle)

 Trigonometric sine function
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Force in Kilonewton (kN), Newton (N)

 Force Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)
 Volumetric Flow Rate Unit Conversion
- Measurement: Mass Flow Rate in Kilogram per Second (kg/s)
 Mass Flow Rate Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)
 Specific Weight Unit Conversion

Check other formula lists

- Force Exerted by Fluid Jet on
 Force Exerted by Fluid Jet on Moving Curved Vane Formulas
- Force Exerted by Fluid Jet on Moving Flat Plate Formulas

Stationary Flat Plate Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

2/1/2024 | 2:40:05 PM UTC

Please leave your feedback here...

