

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 22 Force Exerted by Fluid Jet on Stationary Flat Plate Formulas

Force Exerted by Fluid Jet on Stationary Flat Plate

Flat Plate Inclined at an Angle to the Jet 🕑

1) Cross Sectional Area of Jet for given Dynamic Thrust Normal to Direction of Jet

$$\begin{split} & \textbf{fx} \end{tabular} \textbf{A}_{Jet} = \frac{F_{Y} \cdot [g]}{\gamma_{f} \cdot v_{jet}^{2} \cdot \sin(\angle D) \cdot \cos(\angle D)} \end{split} \label{eq:AJet}$$

2) Cross Sectional Area of Jet for given Dynamic Thrust Parallel to Direction of Jet

$$\begin{split} & \textbf{fx} \end{tabular} \textbf{A}_{Jet} = \frac{F_X \cdot [g]}{\gamma_f \cdot v_{jet}^2 \cdot (\sin(\angle D))^2} \\ & \textbf{Open Calculator Gradients} \\ & \textbf{ex} \end{tabular} \\ & \textbf{1.944875m}^2 = \frac{10.2 \text{kN} \cdot [g]}{9.81 \text{kN/m}^3 \cdot (12 \text{m/s})^2 \cdot (\sin(11^\circ))^2} \end{split}$$

3) Cross Sectional Area of Jet for given Thrust Exerted in Direction of Normal to Plate

$$\begin{split} & \textbf{A}_{Jet} = \frac{F_p \cdot [g]}{\gamma_f \cdot v_{jet}^2 \cdot (\sin(\angle D))} \\ & \textbf{Open Calculator } \\ & \textbf{S} \\ \hline 1.41891m^2 = \frac{39kN \cdot [g]}{9.81kN/m^3 \cdot (12m/s)^2 \cdot (\sin(11^\circ))} \\ & \textbf{4} \\ & \textbf{Discharge Flowing by Jet } \\ & \textbf{M} \\ & \textbf{Q} = Q_{x,y} + Q_{x,y} \\ & \textbf{Open Calculator } \\ & \textbf{M} \\ & \textbf{Q} = Q_{x,y} + Q_{x,y} \\ & \textbf{Open Calculator } \\ & \textbf{M} \\ & \textbf{M}$$

7) Force Exerted by Jet in Direction Normal to Plate

8) Force Exerted by Jet Normal to Direction of Jet Normal to Plate

$$\textbf{fx} \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\right]} \ensuremath{\left[Open \ Calculator \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\right]} \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\right]} \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\right]} \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\right]} \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\right]} \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\right]} \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot \sin(\angle D) \cdot \cos(\angle D) \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right) \cdot \sin(\angle D) \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \right] \ensuremath{\left[F_Y = \left(\frac{\gamma_f \cdot A_{Jet}$$

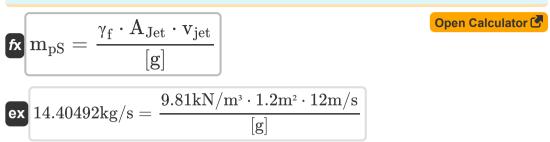
$$32.37707 \mathrm{kN} = \left(rac{9.81 \mathrm{kN/m^3} \cdot 1.2 \mathrm{m^2} \cdot (12 \mathrm{m/s})^2}{\mathrm{[g]}}
ight) \cdot \sin(11^\circ) \cdot \cos(11^\circ)$$

9) Force Exerted by Jet Parallel to Direction of Jet Normal to Plate

$$\begin{split} & \textbf{K} \label{eq:FX} \mathbf{F}_X = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]} \right) \cdot (\sin(\angle D))^2 \\ \\ & \textbf{ex} \ 6.293464 \\ & \textbf{kN} = \left(\frac{9.81 \\ \text{kN}/\text{m}^3 \cdot 1.2 \\ \text{m}^2 \cdot (12 \\ \text{m}/\text{s})^2}{[g]} \right) \cdot (\sin(11^\circ))^2 \\ \end{split}$$

10) Velocity of Fluid given Thrust Exerted Normal to Plate 🕑

$$\begin{aligned} & \text{Open Calculator } \\ & \text{Spen } \\ & \text{V}_{jet} = \sqrt{\frac{F_p \cdot [g]}{\gamma_f \cdot A_{Jet} \cdot (\sin(\angle D))}} \\ & \text{ex} \\ & 13.04873 \text{m/s} = \sqrt{\frac{39 \text{kN} \cdot [g]}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot (\sin(11^\circ))}} \\ & \text{11) Velocity of Fluid given Thrust Normal to Jet } \\ & \text{for } \\ & \text{V}_{jet} = \sqrt{\frac{F_Y \cdot [g]}{\gamma_f \cdot A_{Jet} \cdot (\sin(\angle D)) \cdot \cos(\angle D)}} \\ & \text{open Calculator } \\ & \text{open Calculator } \\ & \text{for } \\ & \text{13.00033m/s} = \sqrt{\frac{38 \text{kN} \cdot [g]}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot (\sin(11^\circ)) \cdot \cos(11^\circ)}} \\ & \text{12) Velocity of Fluid given Thrust Parallel to Jet } \\ & \text{for } \\ & \text{v}_{jet} = \sqrt{\frac{F_X \cdot [g]}{\gamma_f \cdot A_{Jet} \cdot (\sin(\angle D))^2}} \\ & \text{open Calculator } \\ & \text{for } \\ & \text{v}_{jet} = \sqrt{\frac{F_X \cdot [g]}{\gamma_f \cdot A_{Jet} \cdot (\sin(\angle D))^2}} \\ & \text{ex } \\ & 15.27694 \text{m/s} = \sqrt{\frac{10.2 \text{kN} \cdot [g]}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot (\sin(11^\circ))^2}} \end{aligned}$$


Flat Plate Normal to the Jet 🕑

13) Area of Cross Section of Jet for Force Exerted by Stationary Plate on Jet 🖸

$$\begin{array}{l} & \mbox{Open Calculator} \textcircled{\sc c} \\ & \mbox{A}_{Jet} = \frac{F_{St, \perp p} \cdot [g]}{\gamma_f \cdot v_{jet}^2} \\ & \mbox{Open Calculator} \textcircled{\sc c} \\ & \mbox{I} \ 1.200979m^2 = \frac{173N \cdot [g]}{9.81 kN/m^3 \cdot (12m/s)^2} \\ & \mbox{II} \ Area of Cross Section of Jet given Mass of Fluid} \textcircled{\sc c} \\ & \mbox{II} \ A_{Jet} = \frac{m_{pS} \cdot [g]}{\gamma_f \cdot v_{jet}} \\ & \mbox{Open Calculator} \textcircled{\sc c} \\ & \mbox{II} \ 1.19959m^2 = \frac{14.4 kg/s \cdot [g]}{9.81 kN/m^3 \cdot 12m/s} \\ & \mbox{II} \ 1.19959m^2 = \frac{14.4 kg/s \cdot [g]}{9.81 kN/m^3 \cdot 12m/s} \\ & \mbox{II} \ Force Exerted by Stationary Plate on Jet} \textcircled{\sc c} \\ & \mbox{Open Calculator} \textcircled{\sc c} \\ & \mbox{II} \ F_{St, \perp p} = \frac{\gamma_f \cdot A_{Jet} \cdot \left(v_{jet}^2\right)}{[g]} \\ & \mbox{Open Calculator} \textcircled{\sc c} \\ & \mbox{Open Calculator} \overset{\sc c} \\ & \mbox{Open Calculator} \textcircled{\sc c} \\ & \mbox{Open Calculator} \textcircled{\sc c} \\ & \mbox{Open Calculator} \textcircled{\sc c} \\ & \mbox{Open Calculator} \end{array} \end{aligned}$$

16) Mass Flow Rate of Fluid Striking Plate

17) Velocity for Force Exerted by Stationary Plate on Jet 🕑

fx
$$v_{
m jet} = \sqrt{rac{F_{
m St, \perp p} \cdot [g]}{\gamma_{
m f} \cdot A_{
m Jet}}}$$

ex
$$12.00489 \text{m/s} = \sqrt{rac{173 \text{N} \cdot [\text{g}]}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2}}$$

18) Velocity given Mass of Fluid 🕻

fx
$$\mathbf{v}_{jet} = \frac{\mathbf{m}_{pS} \cdot [g]}{\gamma_{f} \cdot \mathbf{A}_{Jet}}$$

ex $11.9959 \mathrm{m/s} = \frac{14.4 \mathrm{kg/s} \cdot [g]}{9.81 \mathrm{kN/m^{3}} \cdot 1.2 \mathrm{m^{2}}}$

Open Calculator

Open Calculator

Jet Striking a Symmetrical Stationary Curved Vane at the Centre C

19) Cross Sectional Area for Force Exerted on Plate in Direction of Flow of Jet

$$\begin{split} & \textbf{K} \end{tabular} \textbf{A}_{Jet} = \frac{F_{jet} \cdot [g]}{\gamma_f \cdot v_{jet}^2 \cdot (1 + \cos(\theta_t))} \end{split} \qquad \textbf{Open Calculator Constraints} \\ & \textbf{ex} \end{tabular} 1.196157 \\ & \textbf{m}^2 = \frac{320 N \cdot [g]}{9.81 k N / m^3 \cdot (12 m / s)^2 \cdot (1 + \cos(31^\circ))} \end{split}$$

20) Force Exerted on Plate in Direction of Flow of Jet on Stationary Curved Vane

$$\begin{aligned} & \textbf{F}_{jet} = \left(\frac{\gamma_f \cdot A_{Jet} \cdot v_{jet}^2}{[g]}\right) \cdot (1 + \cos(\theta_t)) \end{aligned} \qquad \begin{array}{l} & \textbf{Open Calculator} \\ \\ & \textbf{S} \end{aligned} \\ & \textbf{S} \Biggr \\ & \textbf{$$

21) Force Exerted on Plate in Direction of Flow of Jet when Theta is ZeroImage: Second state in the second stat

ex
$$11.98077 \text{m/s} = \sqrt{rac{320 \text{N} \cdot [\text{g}]}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot (1 + \cos(31^\circ))}}$$

Variables Used

- ∠**D** Angle between Jet and Plate (*Degree*)
- A_{Jet} Cross Sectional Area of Jet (Square Meter)
- Fiet Force on Plate in Dir of Jet on Stat Curved Vane (Newton)
- **F**_p Force Exerted by Jet Normal to Plate (*Kilonewton*)
- **F**_{St,⊥p} Force by Stationary Plate on Jet ⊥ Plate (*Newton*)
- **F**_X Force by Jet Normal to Plate in X (*Kilonewton*)
- **F**_Y Force by Jet Normal to Plate in Y (*Kilonewton*)
- mpS Mass Flow Rate of Jet (Kilogram per Second)
- **Q** Discharge by Jet (Cubic Meter per Second)
- Q_{x,v} Discharge in any Direction (Cubic Meter per Second)
- Viet Fluid Jet Velocity (Meter per Second)
- γ_f Specific Weight of Liquid (Kilonewton per Cubic Meter)
- **θ**_t Half of Angle Between Two Tangent to Vane (*Degree*)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Force in Kilonewton (kN), Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion
- Measurement: Mass Flow Rate in Kilogram per Second (kg/s) Mass Flow Rate Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion

Check other formula lists

- Force Exerted by Fluid Jet on
 Force Exerted by Fluid Jet on Moving Curved Vane Formulas
- Force Exerted by Fluid Jet on Moving Flat Plate Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/9/2024 | 7:17:21 AM UTC

Please leave your feedback here...

Stationary Flat Plate Formulas

