
calculatoratoz.com

unitsconverters.com

Geometrical Properties of Trapezoidal Channel Section Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Geometrical Properties of Trapezoidal Channel Section Formulas

Geometrical Properties of Trapezoidal Channel Section

1) Depth of Flow given Top Width for Trapezoidal
$\mathrm{fx}_{\mathrm{X}} \mathrm{d}_{\mathrm{f}(\text { trap })}=\frac{\mathrm{T}_{\text {Trap }}-\mathrm{B}_{\text {trap }}}{2 \cdot \mathrm{Z}_{\text {trap }}}$
Open Calculator
ex $3.301127 \mathrm{~m}=\frac{7.62 \mathrm{~m}-3.8105 \mathrm{~m}}{2 \cdot 0.577}$
2) Depth of Flow given Wetted Perimeter for Trapezoidal
$f \mathbf{f x} \mathrm{~d}_{\mathrm{f}(\text { trap })}=\frac{\mathrm{P}_{\text {Trap }}-\mathrm{B}_{\text {trap }}}{2 \cdot\left(\sqrt{\mathrm{z}_{\text {trap }} \cdot \mathrm{Z}_{\text {trap }}+1}\right)}$
Open Calculator

$$
\mathrm{ex} 3.299841 \mathrm{~m}=\frac{11.43 \mathrm{~m}-3.8105 \mathrm{~m}}{2 \cdot(\sqrt{0.577 \cdot 0.577+1})}
$$

3) Hydraulic Depth for Trapezoidal

$f_{\mathrm{x}} \mathrm{D}_{\text {Trap }}=\frac{\left(\mathrm{B}_{\text {trap }}+\mathrm{d}_{\mathrm{f}(\text { trap })} \cdot \mathrm{z}_{\text {trap }}\right) \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}}{\mathrm{B}_{\text {trap }}+2 \cdot \mathrm{~d}_{\mathrm{f} \text { (trap })} \cdot \mathrm{z}_{\text {trap }}}$

Open Calculator

ex $2.487743 \mathrm{~m}=\frac{(3.8105 \mathrm{~m}+3.32 \mathrm{~m} \cdot 0.577) \cdot 3.32 \mathrm{~m}}{3.8105}$ $3.8105 \mathrm{~m}+2 \cdot 3.32 \mathrm{~m} \cdot 0.577$

4) Hydraulic Radius of Section

$$
f \mathrm{f} \mathrm{R}_{\mathrm{H}(\text { Trap })}=\frac{\left(\mathrm{B}_{\text {trap }}+\mathrm{z}_{\text {trap }} \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}\right) \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}}{\mathrm{B}_{\text {trap }}+2 \cdot \mathrm{~d}_{\mathrm{f}(\text { trap })} \cdot \sqrt{\mathrm{z}_{\text {trap }}^{2}+1}}
$$

ex $1.65649 \mathrm{~m}=\frac{(3.8105 \mathrm{~m}+0.577 \cdot 3.32 \mathrm{~m}) \cdot 3.32 \mathrm{~m}}{3.8105 \mathrm{~m}+2 \cdot 3.32 \mathrm{~m} \cdot \sqrt{(0.577)^{2}+1}}$
5) Section Factor for Trapezoidal $\sqrt{\square}$
$\mathrm{Z}_{\text {Trap }}=\frac{\left(\left(\left(\mathrm{B}_{\text {trap }}+\mathrm{d}_{\mathrm{f}(\text { trap })} \cdot \mathrm{z}_{\text {trap }}\right) \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}\right)\right)^{1.5}}{\sqrt{\mathrm{~B}_{\text {trap }}+2 \cdot \mathrm{~d}_{\mathrm{f}(\text { trap })} \cdot \mathrm{Z}_{\text {trap }}}}$
ex $29.98491 \mathrm{~m}^{\wedge} 2.5=\frac{(((3.8105 \mathrm{~m}+3.32 \mathrm{~m} \cdot 0.577) \cdot 3.32 \mathrm{~m}))^{1.5}}{\sqrt{3.8105 \mathrm{~m}+2 \cdot 3.32 \mathrm{~m} \cdot 0.577}}$
6) Side Slope of Section given Hydraulic Depth
$f \times \mathrm{z}_{\text {trap }}=\frac{\mathrm{B}_{\text {trap }} \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}-\mathrm{B}_{\text {trap }} \cdot \mathrm{D}_{\text {Trap }}}{2 \cdot \mathrm{D}_{\text {Trap }} \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}-\left(\mathrm{d}_{\mathrm{f}(\text { trap })}\right)^{2}}$
Open Calculator
ex $0.60221=\frac{3.8105 m \cdot 3.32 m-3.8105 m \cdot 2.47 m}{2 \cdot 2.47 m \cdot 3.32 m-(3.32 m)^{2}}$
7) Side Slope of Section given Perimeter \preceq
$f \mathbf{f x} \mathrm{z}_{\text {trap }}=\sqrt{\left(\left(\frac{\mathrm{P}_{\text {Trap }}-\mathrm{B}_{\text {trap }}}{2 \cdot \mathrm{~d}_{\mathrm{f}(\text { trap })}}\right)^{2}\right)-1}$
Open Calculator
$\operatorname{ex} 0.562842=\sqrt{\left(\left(\frac{11.43 \mathrm{~m}-3.8105 \mathrm{~m}}{2 \cdot 3.32 \mathrm{~m}}\right)^{2}\right)-1}$
8) Side Slope of Section given Top Width for Trapezoidal
$f \mathrm{fx} \mathrm{z}_{\text {trap }}=\frac{\mathrm{T}_{\text {Trap }}-\mathrm{B}_{\text {trap }}}{2 \cdot \mathrm{~d}_{\mathrm{f}(\text { trap })}}$
ex $0.57372=\frac{7.62 \mathrm{~m}-3.8105 \mathrm{~m}}{2 \cdot 3.32 \mathrm{~m}}$
9) Side Slope of Section given Wetted Area of Trapezoidal
$\mathbf{f} \mathbf{x} \mathrm{z}_{\text {trap }}=\frac{\left(\frac{\mathrm{S}_{\text {Trap }}}{\mathrm{d}_{\mathrm{f} \text { (trap) }}}\right)-\mathrm{B}_{\text {trap }}}{\mathrm{d}_{\mathrm{f} \text { (trap) }}}$
$\mathbf{e x} 0.56332=\frac{\left(\frac{18.86 \mathrm{~m}^{2}}{3.32 \mathrm{~m}}\right)-3.8105 \mathrm{~m}}{3.32 \mathrm{~m}}$
Open Calculator
10) Top Width for Trapezoidal
$\mathrm{fx} \mathrm{T}_{\text {Trap }}=\mathrm{B}_{\text {trap }}+2 \cdot \mathrm{~d}_{\mathrm{f}(\text { trap })} \cdot \mathrm{z}_{\text {trap }}$
Open Calculator
ex $7.64178 \mathrm{~m}=3.8105 \mathrm{~m}+2 \cdot 3.32 \mathrm{~m} \cdot 0.577$
11) Wetted Area for Trapezoidal
$\mathrm{fx}_{\mathrm{x}} \mathrm{S}_{\text {Trap }}=\left(\mathrm{B}_{\text {trap }}+\mathrm{z}_{\text {trap }} \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}\right) \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}$
Open Calculator
ex $19.01078 \mathrm{~m}^{2}=(3.8105 \mathrm{~m}+0.577 \cdot 3.32 \mathrm{~m}) \cdot 3.32 \mathrm{~m}$
12) Wetted Perimeter for Trapezoidal

$$
\mathrm{P}_{\text {Trap }}=\mathrm{B}_{\text {trap }}+2 \cdot \mathrm{~d}_{\mathrm{f}(\text { trap })} \cdot\left(\sqrt{\mathrm{Z}_{\text {trap }} \cdot \mathrm{Z}_{\text {trap }}+1}\right)
$$

ex $11.47655 \mathrm{~m}=3.8105 \mathrm{~m}+2 \cdot 3.32 \mathrm{~m} \cdot(\sqrt{0.577 \cdot 0.577+1})$

13) Width of Section given Hydraulic Depth

fx
Open Calculator

$$
\begin{aligned}
& \mathrm{B}_{\text {trap }}=\frac{\left(\mathrm{d}_{\mathrm{f}(\text { trap })} \cdot \mathrm{Z}_{\text {trap }} \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}\right)-\mathrm{D}_{\text {Trap }} \cdot 2 \cdot \mathrm{~d}_{\mathrm{f}(\text { trap })} \cdot \mathrm{Z}_{\text {trap }}}{\mathrm{D}_{\text {Trap }}-\mathrm{d}_{\mathrm{f}(\text { trap })}} \\
& \text { ex } 3.650984 \mathrm{~m}=\frac{(3.32 \mathrm{~m} \cdot 0.577 \cdot 3.32 \mathrm{~m})-2.47 \mathrm{~m} \cdot 2 \cdot 3.32 \mathrm{~m} \cdot 0.577}{2.47 \mathrm{~m}-3.32 \mathrm{~m}}
\end{aligned}
$$

14) Width of Section given Top Width
$\mathrm{f}_{\mathrm{x}} \mathrm{B}_{\text {trap }}=\mathrm{T}_{\text {Trap }}-2 \cdot \mathrm{~d}_{\mathrm{f}(\text { trap })} \cdot \mathrm{z}_{\text {trap }}$
Open Calculator
ex $3.78872 \mathrm{~m}=7.62 \mathrm{~m}-2 \cdot 3.32 \mathrm{~m} \cdot 0.577$
15) Width of Section given Wetted Area for Trapezoidal
$\mathrm{fx} \mathrm{B}_{\text {trap }}=\left(\frac{\mathrm{S}_{\text {Trap }}}{\mathrm{d}_{\mathrm{f}(\text { trap })}}\right)-\left(\mathrm{z}_{\text {trap }} \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}\right)$
Open Calculator
ex $3.765083 \mathrm{~m}=\left(\frac{18.86 \mathrm{~m}^{2}}{3.32 \mathrm{~m}}\right)-(0.577 \cdot 3.32 \mathrm{~m})$
16) Width of Section given Wetted Perimeters in Section

$$
\mathrm{B}_{\text {trap }}=\mathrm{P}_{\text {Trap }}-2 \cdot \mathrm{~d}_{\mathrm{f}(\text { trap })} \cdot\left(\sqrt{\mathrm{Z}_{\text {trap }} \cdot \mathrm{Z}_{\text {trap }}+1}\right)
$$

$$
\text { ex } 3.763951 \mathrm{~m}=11.43 \mathrm{~m}-2 \cdot 3.32 \mathrm{~m} \cdot(\sqrt{0.577 \cdot 0.577+1})
$$

17) Width of Sections given Hydraulic Radius
$\mathrm{B}_{\text {trap }}=\frac{2 \cdot \mathrm{R}_{\mathrm{H}(\text { Trap })} \cdot \mathrm{d}_{\mathrm{f}(\text { trap })} \cdot \sqrt{\mathrm{z}_{\text {trap }}^{2}+1}-\mathrm{z}_{\text {trap }} \cdot \mathrm{d}_{\mathrm{f}(\text { trap })}^{2}}{\mathrm{~d}_{\mathrm{f}(\text { trap })}-\mathrm{R}_{\mathrm{H}(\text { Trap })}}$
ex $3.765902 \mathrm{~m}=\frac{2 \cdot 1.65 \mathrm{~m} \cdot 3.32 \mathrm{~m} \cdot \sqrt{(0.577)^{2}+1}-0.577 \cdot(3.32 \mathrm{~m})^{2}}{3.32 \mathrm{~m}-1.65 \mathrm{~m}}$

Variables Used

- $B_{\text {trap }}$ Width of Trap Channel (Meter)
- $\mathbf{d}_{\mathbf{f}(\text { trap })}$ Depth of Flow of Trapezoidal Channel (Meter)
- DTrap Hydraulic Depth of Trapezoidal Channel (Meter)
- PTrap Wetted Perimeter of Trapezoidal Channel (Meter)
- $\mathbf{R}_{\mathbf{H}(\text { Trap })}$ Hydraulic Radius of Trapezoidal Channel (Meter)
- $S_{\text {Trap }}$ Wetted Surface Area of Trapezoidal Channel (Square Meter)
- T Trap Top Width of Trapezoidal Channel (Meter)
- $\mathbf{Z}_{\text {trap }}$ Side slope of Trapezoidal Channel
- $\mathbf{Z}_{\text {Trap }}$ Section Factor of Trapezoidal (Meter^2.5)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion ©

- Measurement: Section Factor in Meter^2.5 ($\mathrm{m}^{\wedge} 2.5$)

Section Factor Unit Conversion

Check other formula lists

- Geometrical Properties of Circular Channel Section Formulas
- Geometrical Properties of Parabolic Channel Section Formulas
- Geometrical Properties of Rectangular Channel Section Formullas
- Geometrical Properties of Trapezoidal Channel Section Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

