

Prediction of Sediment Distribution Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Prediction of Sediment Distribution Formulas

Prediction of Sediment Distribution

Area Increment Method

1) Depth at which Reservoir is Completely Filled up

$$\mathbf{f}_{\mathbf{o}} \left[\mathbf{h}_{\mathrm{o}} = \mathbf{H} - \left(rac{\mathbf{V}_{\mathrm{s}} - \mathbf{V}_{\mathrm{o}}}{\mathbf{A}_{\mathrm{o}}}
ight)
ight]$$

Open Calculator

$$2 ext{m} = 11 ext{m} - \left(rac{455 ext{m}^3 - 5 ext{m}^3}{50 ext{m}^2}
ight)$$

2) Incremental Sediment Volume

fx
$$V_{o} = (A_{o} \cdot \Delta H)$$

Open Calculator 🖸

$$\mathbf{ex} \left[25\mathrm{m}^{\scriptscriptstyle 3} = (50\mathrm{m}^{\scriptscriptstyle 2} \cdot 0.5\mathrm{m})
ight]$$

3) Original Reservoir Area at New Zero Level

$$\mathbf{A}_{\mathrm{o}} = rac{\mathrm{V_{s} - V_{o}}}{\mathrm{H - h_{o}}}$$

Open Calculator

$$= 50 \text{m}^2 = \frac{455 \text{m}^3 - 5 \text{m}^3}{11 \text{m} - 2 \text{m}}$$

4) Sediment Volume between Old Zero and New Zero Bed Level

 $ag{V_{
m o} = V_{
m s} - ({
m A_o} \cdot ({
m H} - {
m h_o}))}$

Open Calculator 🚰

 $\mathbf{ex} \ 5 \mathrm{m}^{_3} = 455 \mathrm{m}^{_3} - (50 \mathrm{m}^{_2} \cdot (11 \mathrm{m} - 2 \mathrm{m}))$

5) Sediment Volume to be Distributed in Reservoir

fx $V_s = A_o \cdot (H - h_o) + V_o$

Open Calculator

 $= 455 \mathrm{m}^3 = 50 \mathrm{m}^2 \cdot (11 \mathrm{m} - 2 \mathrm{m}) + 5 \mathrm{m}^3$

Empirical Area Reduction Method

6) Difference in Elevations and Original Bed of Reservoir given New Total Depth of Reservoir

 $\mathbf{f} \mathbf{x} \mathbf{H} = \mathbf{D} + \mathbf{h}_0$

Open Calculator

 $\boxed{11m = 9m + 2m}$

7) Difference in Elevations of Full Reservoir Level and Original Bed of Reservoir

 $\mathbf{f}\mathbf{x} = \frac{\mathbf{h}_{\mathrm{o}}}{\mathbf{p}}$

Open Calculator 🗗

 $\boxed{\textbf{ex}} 11.0011 \text{m} = \frac{2 \text{m}}{0.1818 \text{m}}$

8) Height up to which Sediment Completely Fills up given New Relative Depth

fx $h_{
m o}={
m p}\cdot{
m H}$

Open Calculator

- $= 1.9998 \text{m} = 0.1818 \text{m} \cdot 11 \text{m}$
- 9) New Total Depth of Reservoir
- $\mathbf{f} \mathbf{x} \mathbf{D} = \mathbf{H} \mathbf{h}_{\mathbf{0}}$

Open Calculator

- |9m| = 11m 2m
- 10) Relative Area for Different Type Classification of Reservoir
- $oldsymbol{A}_{\mathrm{p}} = \mathrm{C} \cdot (\mathrm{p^m} \, _ \, \{1\}) \cdot (1-\mathrm{p})^\mathrm{n} \, _ \, \{1\}$
- Open Calculator 🗗
- $\boxed{ 0.201478 = 5.074 \cdot \left((0.1818 \mathrm{m})^{1.85} \right) \cdot (1 0.1818 \mathrm{m})^{0.36} }$
- 11) Relative Area given Soil Erodibility Factor
- $oldsymbol{A}_{
 m p} = rac{{
 m A}_{
 m s}}{{
 m K}}$

Open Calculator 🖒

ex $1.9 = \frac{0.323 \mathrm{m}^2}{0.17}$

12) Relative Depth at New Zero Elevation

$$p = rac{\mathrm{h_o}}{\mathrm{H}}$$

Open Calculator 🗗

$$0.181818m = \frac{2m}{11m}$$

13) Sediment Area at any Height above Datum

Open Calculator

$$\mathbf{ex} \ 0.323 \mathrm{m}^{_2} = 1.9 \cdot 0.17$$

14) Volume of Sediment Deposited between two Consecutive Heights by Average End Area Method

$$\Delta V_{
m s} = ({
m A}_1 + {
m A}_2) \cdot \left(rac{\Delta H}{2}
ight)$$

Open Calculator

ex
$$5\mathrm{m}^3=(14\mathrm{m}^2+6\mathrm{m}^2)\cdot\left(rac{0.5\mathrm{m}}{2}
ight)$$

15) Volume of Sediment Deposited between two Consecutive Heights by Weighted Area Method

$$\Delta V_{
m s} = \left({
m A}_1 + {
m A}_2 + \sqrt{{
m A}_1 \cdot {
m A}_2}
ight) \cdot \left(rac{\Delta {
m H}}{3}
ight)$$

Open Calculator

$$oxed{ex} 4.860859 \mathrm{m}^{_3} = \left(14 \mathrm{m}^{_2} + 6 \mathrm{m}^{_2} + \sqrt{14 \mathrm{m}^{_2} \cdot 6 \mathrm{m}^{_2}}
ight) \cdot \left(rac{0.5 \mathrm{m}}{3}
ight)}$$

16) Volume of Sediment Deposition given Incremental Area

Open Calculator

$$\Delta V_{
m s} = 0.5 \cdot (({
m A}_1 + {
m A}_2) \cdot \Delta H)$$

$$\mathbf{ex} \left[5 \mathrm{m}^{_3} = 0.5 \cdot ((14 \mathrm{m}^{_2} + 6 \mathrm{m}^{_2}) \cdot 0.5 \mathrm{m})
ight]$$

Variables Used

- A₁ Cross-Sectional Area at Point 1 (Square Meter)
- A2 Cross-Sectional Area at Point 2 (Square Meter)
- An Area at the New Zero Elevation (Square Meter)
- A_p Dimensionless Relative Area
- As Sediment Area (Square Meter)
- C Coefficient c
- **D** New Total Depth of Reservoir (Meter)
- **H** Difference in the Elevation (FRL and Original bed) (Meter)
- **h**o Height above Bed (Meter)
- K Soil Erodibility Factor
- m₁ Coefficient m1
- n₁ Coefficient n1
- p Relative Depth (Meter)
- **V**_o Volume of Sediment (Cubic Meter)
- V_s Volume of Sediment to be Distributed (Cubic Meter)
- AH Change in Head Between the Points (Meter)
- ΔV_S Volume of Sediment Deposit (Cubic Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Volume in Cubic Meter (m³)

 Volume Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion

Check other formula lists

Prediction of Sediment
 Distribution Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/29/2024 | 6:42:17 AM UTC

Please leave your feedback here...

