
calculatoratoz.com

Force Exerted by Fluid Jet on Moving Flat Plate Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Force Exerted by Fluid Jet on Moving Flat Plate Formulas

Force Exerted by Fluid Jet on Moving Flat Plate ©

Flat Plate Inclined at an Angle to the Jet

1) Dynamic Thrust Exerted by Jet on Plate
$f \mathrm{Fx}=\left(\frac{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}\right)^{2}}{\mathrm{G}}\right) \cdot\left(\angle \mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right)$
$\operatorname{ex} 2.176761 \mathrm{kN}=\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})^{2}}{10}\right) \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)$
2) Normal Thrust Normal to Direction of Jet
fX

$$
\mathrm{Ft}=\left(\frac{\gamma_{\mathrm{f}} \cdot \mathrm{~A}_{\text {Jet }} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}\right)^{2}}{\mathrm{G}}\right) \cdot\left(\angle \mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right) \cdot \cos (\theta)
$$

$1.88513 \mathrm{kN}=\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})^{2}}{10}\right) \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right) \cdot \cos \left(30^{\circ}\right)$
3) Normal Thrust Parallel to Direction of Jet
$f \mathbf{x} \mathrm{Ft}=\left(\frac{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}\right)^{2}}{\mathrm{G}}\right) \cdot\left(\angle \mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right)$
ex $2.176761 \mathrm{kN}=\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})^{2}}{10}\right) \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)$

Absolute Velocity

4) Absolute velocity for dynamic thrust exerted by jet on plate
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}_{\text {absolute }}=\left(\sqrt{\frac{\mathrm{m}_{\mathrm{f}} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot\left(\angle \mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right)}}\right)+\mathrm{v}$
$\operatorname{ex} 9.698337 \mathrm{~m} / \mathrm{s}=\left(\sqrt{\frac{0.9 \mathrm{~kg} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)}}\right)+9.69 \mathrm{~m} / \mathrm{s}$
5) Absolute Velocity for given Normal Thrust Normal to Direction of Jet
$\mathrm{fx} \mathrm{V}_{\text {absolute }}=\left(\sqrt{\frac{\mathrm{Ft} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot\left(\angle \mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right) \cdot \cos (\theta)}}\right)+\mathrm{v}$
ex $16.36726 \mathrm{~m} / \mathrm{s}=\left(\sqrt{\frac{0.5 \mathrm{kN} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right) \cdot \cos \left(30^{\circ}\right)}}\right)+9.69 \mathrm{~m} / \mathrm{s}$
6) Absolute Velocity for given Normal Thrust Parallel to Direction of Jet
$f \times V_{\text {absolute }}=\sqrt{\frac{\mathrm{Ft} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot\left(\angle \mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right)^{2}}}+\mathrm{v}$
Open Calculator
ex $9.749247 \mathrm{~m} / \mathrm{s}=\sqrt{\frac{0.5 \mathrm{kN} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)^{2}}}+9.69 \mathrm{~m} / \mathrm{s}$
7) Absolute Velocity for Mass of Fluid Striking Plate
$f \mathbf{x} \mathrm{~V}_{\text {absolute }}=\left(\frac{\mathrm{m}_{\mathrm{f}} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\text {Jet }}}\right)+\mathrm{v}$
ex $9.690765 \mathrm{~m} / \mathrm{s}=\left(\frac{0.9 \mathrm{~kg} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2}}\right)+9.69 \mathrm{~m} / \mathrm{s}$

Cross Sectional Area

8) Cross Section Area for Mass of Fluid Striking Plate
$\mathrm{f}_{\mathrm{x}} \mathrm{A}_{\text {Jet }}=\frac{\mathrm{m}_{\mathrm{f}} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}\right)}$
ex $2.237637 \mathrm{~m}^{2}=\frac{0.9 \mathrm{~kg} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})}$
9) Cross Sectional Area for given Dynamic Thrust Exerted by Jet on Plate
$f \mathbf{x} \mathrm{~A}_{\mathrm{Jet}}=\frac{\mathrm{m}_{\mathrm{f}} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot\left(\angle \mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right) \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}_{\mathrm{jet}}\right)^{2}}$
Open Calculator
ex $0.023103 \mathrm{~m}^{2}=\frac{0.9 \mathrm{~kg} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right) \cdot(10.1 \mathrm{~m} / \mathrm{s}-12 \mathrm{~m} / \mathrm{s})^{2}}$
10) Cross Sectional Area for given Normal Thrust Normal to Direction of Jet \longleftarrow

Open Calculator
ex $0.31828 \mathrm{~m}^{2}=\frac{0.5 \mathrm{kN} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})^{2} \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right) \cdot \cos \left(30^{\circ}\right)}$
11) Cross Sectional Area for given Work Done by Jet per Second
$f x \mathrm{~A}_{\text {Jet }}=\frac{\mathrm{Ft} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}_{\text {jet }}\right)^{2} \cdot \mathrm{~V}_{\mathrm{j}} \cdot \angle \mathrm{D}^{2}}$
$\boldsymbol{e x} 0.425609 \mathrm{~m}^{2}=\frac{0.5 \mathrm{kN} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(10.1 \mathrm{~m} / \mathrm{s}-12 \mathrm{~m} / \mathrm{s})^{2} \cdot 9 \mathrm{~m} / \mathrm{s} \cdot\left(11^{\circ}\right)^{2}}$

Velocity of Jet

12) Velocity of jet for dynamic thrust exerted by jet on plate
$f \mathrm{x}=\mathrm{v}=-\left(\sqrt{\frac{\mathrm{m}_{\mathrm{f}} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot\left(\angle \mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right)}}-\mathrm{V}_{\text {absolute }}\right)$
$\mathrm{ex} 10.09166 \mathrm{~m} / \mathrm{s}=-\left(\sqrt{\frac{0.9 \mathrm{~kg} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)}}-10.1 \mathrm{~m} / \mathrm{s}\right)$
13) Velocity of Jet given Normal Thrust Normal to Direction of Jet
$\mathrm{fx} \mathrm{v}=-\left(\sqrt{\frac{\mathrm{Ft} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\text {Jet }} \cdot\left(\angle \mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right) \cdot \cos (\theta)}}\right)+\mathrm{V}_{\text {absolute }}$
Open Calculator ©
ex $9.888847 \mathrm{~m} / \mathrm{s}=-\left(\sqrt{\frac{0.5 \mathrm{kN} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right) \cdot \cos \left(30^{\circ}\right)}}\right)+10.1 \mathrm{~m} / \mathrm{s}$
14) Velocity of Jet given Normal Thrust Parallel to Direction of Jet
$f \mathrm{x} v=-\left(\sqrt{\frac{\mathrm{Ft} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot\left(\angle \mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right)^{2}}}-\mathrm{V}_{\text {absolute }}\right)$
ex $10.04075 \mathrm{~m} / \mathrm{s}=-\left(\sqrt{\frac{0.5 \mathrm{kN} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot\left(11^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)^{2}}}-10.1 \mathrm{~m} / \mathrm{s}\right)$

Flat Plate Normal to the Jet

15) Absolute Velocity given Thrust Exerted by Jet on Plate
$f \times V_{\text {absolute }}=\left(\sqrt{\frac{m_{f} \cdot G}{\gamma_{f} \cdot \mathrm{~A}_{\mathrm{Jet}}}}\right)+\mathrm{v}$
ex $9.71765 \mathrm{~m} / \mathrm{s}=\left(\sqrt{\frac{0.9 \mathrm{~kg} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2}}}\right)+9.69 \mathrm{~m} / \mathrm{s}$
16) Dynamic Thrust Exerted on Plate by Jet
$f \mathrm{fx}=\frac{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\text {Jet }} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}\right)^{2}}{\mathrm{G}}$
ex $0.197887 \mathrm{kN}=\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})^{2}}{10}$
17) Efficiency of Wheel
$\mathrm{fx} \eta=\frac{2 \cdot \mathrm{v} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}\right)}{\mathrm{V}_{\text {absolute }}^{2}}$
ex $0.077892=\frac{2 \cdot 9.69 \mathrm{~m} / \mathrm{s} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})}{(10.1 \mathrm{~m} / \mathrm{s})^{2}}$
18) Velocity of jet for mass of fluid striking plate
$\mathrm{f} v=-\left(\left(\frac{\mathrm{m}_{\mathrm{f}} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\text {Jet }}}\right)-V_{\text {absolute }}\right)$
Open Calculator
ex $10.09924 \mathrm{~m} / \mathrm{s}=-\left(\left(\frac{0.9 \mathrm{~kg} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2}}\right)-10.1 \mathrm{~m} / \mathrm{s}\right)$
19) Velocity of jet given dynamic thrust exerted by jet on plate
$f \mathbf{f x}=-\left(\sqrt{\frac{\mathrm{m}_{\mathrm{f}} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\text {Jet }}}}-V_{\text {absolute }}\right)$
ex $10.07235 \mathrm{~m} / \mathrm{s}=-\left(\sqrt{\frac{0.9 \mathrm{~kg} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2}}}-10.1 \mathrm{~m} / \mathrm{s}\right)$
20) Work Done by Jet on Plate per Second
$f \times \mathrm{w}=\frac{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\text {Jet }} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}\right)^{2} \cdot \mathrm{v}}{\mathrm{G}}$
ex $1.917528 \mathrm{KJ}=\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 1.2 \mathrm{~m}^{2} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})^{2} \cdot 9.69 \mathrm{~m} / \mathrm{s}}{10}$

Cross Sectional Area

21) Cross Sectional Area given Dynamic Thrust Exerted by Jet on Plate
$f \times \mathrm{A}_{\text {Jet }}=\frac{\mathrm{m}_{\mathrm{f}} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}\right)^{2}}$
ex $5.457651 \mathrm{~m}^{2}=\frac{0.9 \mathrm{~kg} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})^{2}}$
22) Cross Sectional Area given Mass of Fluid Striking Plate
```
W
```

$f \mathbf{x} \mathrm{~A}_{\text {Jet }}=\frac{\mathrm{m}_{\mathrm{f}} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}\right)}$
ex $2.237637 \mathrm{~m}^{2}=\frac{0.9 \mathrm{~kg} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})}$
23) Cross Sectional Area given Work Done by Jet on Plate per Second
$f \mathbf{x} \mathrm{~A}_{\text {Jet }}=\frac{\mathrm{w} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot\left(\mathrm{V}_{\text {absolute }}-\mathrm{v}\right)^{2} \cdot \mathrm{v}}$
ex $2.440642 \mathrm{~m}^{2}=\frac{3.9 \mathrm{KJ} \cdot 10}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(10.1 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s})^{2} \cdot 9.69 \mathrm{~m} / \mathrm{s}}$

Variables Used

- $\angle \mathrm{D}$ Angle between Jet and Plate (Degree)
- A Jet Cross Sectional Area of Jet (Square Meter)
- Ft Thrust Force (Kilonewton)
- G Specific Gravity of Fluid
- \mathbf{m}_{f} Fluid Mass (Kilogram)
- v Velocity of Jet (Meter per Second)
- $\mathbf{V}_{\text {absolute }}$ Absolute Velocity of Issuing Jet (Meter per Second)
- $\mathbf{V}_{\mathbf{j}}$ Jet Velocity (Meter per Second)
- $\mathbf{v}_{\mathbf{j e t}}$ Fluid Jet Velocity (Meter per Second)
- w Work Done (Kilojoule)
- $\mathbf{Y}_{\mathbf{f}}$ Specific Weight of Liquid (Kilonewton per Cubic Meter)
- $\boldsymbol{\eta}$ Efficiency of Jet
- $\boldsymbol{\theta}$ Theta (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Energy in Kilojoule (KJ)

Energy Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion

Check other formula lists

- Force Exerted by Fluid Jet on Moving Curved Vane Formulas
- Force Exerted by Fluid Jet on Moving Flat Plate Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

