

Force Exerted by Fluid Jet on Moving Flat Plate Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Force Exerted by Fluid Jet on Moving Flat Plate **Formulas**

Force Exerted by Fluid Jet on Moving Flat Plate

Flat Plate Inclined at an Angle to the Jet

1) Dynamic Thrust Exerted by Jet on Plate

$$\text{Ft} = \left(\frac{\gamma_f \cdot A_{Jet} \cdot \left(V_{absolute} - v\right)^2}{G}\right) \cdot \left(\angle D \cdot \left(\frac{180}{\pi}\right)\right)$$

Open Calculator

$$\boxed{ 2.176761 \text{kN} = \left(\frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left(10.1 \text{m/s} - 9.69 \text{m/s} \right)^2}{10} \right) \cdot \left(11^\circ \cdot \left(\frac{180}{\pi} \right) \right) }$$

2) Normal Thrust Normal to Direction of Jet

Open Calculator 2

$$\mathrm{Ft} = \left(\frac{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot \left(\mathrm{V}_{\mathrm{absolute}} - \mathrm{v}\right)^{2}}{\mathrm{G}}\right) \cdot \left(\angle\mathrm{D} \cdot \left(\frac{180}{\pi}\right)\right) \cdot \cos(\theta)$$

ex

$$1.88513 \text{kN} = \left(\frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left(10.1 \text{m/s} - 9.69 \text{m/s}\right)^2}{10}\right) \cdot \left(11^{\circ} \cdot \left(\frac{180}{\pi}\right)\right) \cdot \cos(30^{\circ})$$

3) Normal Thrust Parallel to Direction of Jet

$$\texttt{Ft} = \left(\frac{\gamma_{\rm f} \cdot A_{\rm Jet} \cdot (V_{\rm absolute} - v)^2}{G}\right) \cdot \left(\angle D \cdot \left(\frac{180}{\pi}\right)\right)$$

$$\underbrace{2.176761 \text{kN} = \left(\frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left(10.1 \text{m/s} - 9.69 \text{m/s} \right)^2}{10} \right) \cdot \left(11^\circ \cdot \left(\frac{180}{\pi} \right) \right) }$$

Absolute Velocity 🗗

4) Absolute velocity for dynamic thrust exerted by jet on plate

$$V_{absolute} = \left(\sqrt{rac{m_f \cdot G}{\gamma_f \cdot A_{Jet} \cdot \left(\angle D \cdot \left(rac{180}{\pi}
ight)
ight)}}
ight) + v$$

Open Calculator 🚰

5) Absolute Velocity for given Normal Thrust Normal to Direction of Jet

$$V_{absolute} = \left(\sqrt{rac{Ft \cdot G}{\gamma_f \cdot A_{Jet} \cdot \left(\angle D \cdot \left(rac{180}{\pi}
ight)
ight) \cdot \cos(heta)}}
ight) + v$$

Open Calculator

$$\boxed{ 16.36726 \text{m/s} = \left(\sqrt{\frac{0.5 \text{kN} \cdot 10}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left(11^\circ \cdot \left(\frac{180}{\pi}\right)\right) \cdot \cos(30^\circ)} \right) + 9.69 \text{m/s} }$$

6) Absolute Velocity for given Normal Thrust Parallel to Direction of Jet

$$V_{absolute} = \sqrt{rac{Ft \cdot G}{\gamma_f \cdot A_{Jet} \cdot \left(\angle D \cdot \left(rac{180}{\pi}
ight)
ight)^2}} + v$$

Open Calculator

$$\boxed{ 9.749247 \text{m/s} = \sqrt{\frac{0.5 \text{kN} \cdot 10}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left(11^\circ \cdot \left(\frac{180}{\pi}\right)\right)^2} + 9.69 \text{m/s} }$$

7) Absolute Velocity for Mass of Fluid Striking Plate

$$V_{absolute} = \left(rac{m_f \cdot G}{\gamma_f \cdot A_{Jet}}
ight) + v$$

$$oxed{ex} 9.690765 ext{m/s} = \left(rac{0.9 ext{kg} \cdot 10}{9.81 ext{kN/m}^3 \cdot 1.2 ext{m}^2}
ight) + 9.69 ext{m/s}$$

Cross Sectional Area

8) Cross Section Area for Mass of Fluid Striking Plate

$$egin{aligned} \mathbf{A}_{\mathrm{Jet}} = rac{\mathrm{m_f \cdot G}}{\gamma_{\mathrm{f}} \cdot (\mathrm{V}_{\mathrm{absolute}} - \mathrm{v})} \end{aligned}$$

Open Calculator 🗗

$$\boxed{ 2.237637 m^2 = \frac{0.9 kg \cdot 10}{9.81 kN/m^3 \cdot (10.1 m/s - 9.69 m/s)} }$$

9) Cross Sectional Area for given Dynamic Thrust Exerted by Jet on Plate

$$\mathbf{fx} egin{equation} \mathbf{A}_{\mathrm{Jet}} = rac{m_{\mathrm{f}} \cdot \mathbf{G}}{\gamma_{\mathrm{f}} \cdot \left(\angle \mathbf{D} \cdot \left(rac{180}{\pi}
ight)
ight) \cdot \left(V_{\mathrm{absolute}} - v_{\mathrm{jet}}
ight)^2} \end{gathered}$$

Open Calculator

$$\boxed{ 0.023103 \text{m}^2 = \frac{0.9 \text{kg} \cdot 10}{9.81 \text{kN/m}^3 \cdot \left(11^\circ \cdot \left(\frac{180}{\pi}\right)\right) \cdot \left(10.1 \text{m/s} - 12 \text{m/s}\right)^2} }$$

10) Cross Sectional Area for given Normal Thrust Normal to Direction of Jet

$$\mathbf{K} \mathbf{A}_{\mathrm{Jet}} = rac{\mathrm{Ft} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \left(\mathrm{V}_{\mathrm{absolute}} - \mathrm{v}
ight)^2 \cdot \left(\angle \mathrm{D} \cdot \left(rac{180}{\pi}
ight)
ight) \cdot \cos(\theta)}$$

Open Calculator 🗗

$$\boxed{0.31828 m^2 = \frac{0.5 kN \cdot 10}{9.81 kN/m^3 \cdot \left(10.1 m/s - 9.69 m/s\right)^2 \cdot \left(11^\circ \cdot \left(\frac{180}{\pi}\right)\right) \cdot \cos(30^\circ)}}$$

11) Cross Sectional Area for given Work Done by Jet per Second 🗲

$$\mathbf{fx} egin{equation} \mathbf{A}_{\mathrm{Jet}} = rac{\mathrm{Ft} \cdot \mathrm{G}}{\gamma_{\mathrm{f}} \cdot \left(\mathrm{V}_{\mathrm{absolute}} - \mathrm{v}_{\mathrm{jet}}
ight)^2 \cdot \mathrm{V}_{\mathrm{j}} \cdot \angle \mathrm{D}^2} \ \end{bmatrix}$$

$$= \frac{0.5 \text{kN} \cdot 10}{9.81 \text{kN/m}^3 \cdot \left(10.1 \text{m/s} - 12 \text{m/s}\right)^2 \cdot 9 \text{m/s} \cdot \left(11^\circ\right)^2 }$$

Velocity of Jet 🛂

12) Velocity of jet for dynamic thrust exerted by jet on plate

$$\boxed{\mathbf{v} = - \left(\sqrt{\frac{m_f \cdot G}{\gamma_f \cdot A_{Jet} \cdot \left(\angle D \cdot \left(\frac{180}{\pi} \right) \right)}} - V_{absolute} \right)}$$

Open Calculator 🗗

$$= -\left(\sqrt{\frac{0.9 \text{kg} \cdot 10}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left(11^{\circ} \cdot \left(\frac{180}{\pi}\right)\right)}} - 10.1 \text{m/s} \right)$$

13) Velocity of Jet given Normal Thrust Normal to Direction of Jet

$$\mathbf{r} = -\left(\sqrt{rac{\mathrm{Ft}\cdot\mathrm{G}}{\gamma_{\mathrm{f}}\cdot\mathrm{A}_{\mathrm{Jet}}\cdot\left(\angle\mathrm{D}\cdot\left(rac{180}{\pi}
ight)
ight)\cdot\mathrm{cos}(\theta)}}
ight) + \mathrm{V}_{\mathrm{absolute}}$$

Open Calculator

$$= \sqrt{\frac{0.5 \text{kN} \cdot 10}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left(11^\circ \cdot \left(\frac{180}{\pi}\right)\right) \cdot \cos(30^\circ)}} \right) + 10.1 \text{m/s}$$

14) Velocity of Jet given Normal Thrust Parallel to Direction of Jet

$$\boxed{v = -\bigg(\sqrt{\frac{Ft \cdot G}{\gamma_f \cdot A_{Jet} \cdot \left(\angle D \cdot \left(\frac{180}{\pi}\right)\right)^2}} - V_{absolute}\bigg)}$$

$$\boxed{ 10.04075 \text{m/s} = - \Bigg(\sqrt{\frac{0.5 \text{kN} \cdot 10}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left(11\degree \cdot \left(\frac{180}{\pi}\right)\right)^2} - 10.1 \text{m/s} \Bigg) }$$

Flat Plate Normal to the Jet

15) Absolute Velocity given Thrust Exerted by Jet on Plate

 $V_{
m absolute} = \left(\sqrt{rac{{
m m_f \cdot G}}{{
m \gamma_f \cdot A_{
m Jet}}}}
ight) + {
m v}$

Open Calculator 🗗

16) Dynamic Thrust Exerted on Plate by Jet

 $ext{Ft} = rac{\gamma_{
m f} \cdot {
m A}_{
m Jet} \cdot \left({
m V}_{
m absolute} - {
m v}
ight)^2}{{
m G}}$

Open Calculator

 $\boxed{0.197887 \text{kN} = \frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left(10.1 \text{m/s} - 9.69 \text{m/s}\right)^2}{10}}$

17) Efficiency of Wheel

 $\eta = rac{2 \cdot v \cdot (V_{absolute} - v)}{V_{absolute}^2}$

Open Calculator 🗗

 $= \frac{2 \cdot 9.69 \text{m/s} \cdot (10.1 \text{m/s} - 9.69 \text{m/s})}{(10.1 \text{m/s})^2}$

18) Velocity of jet for mass of fluid striking plate

 $v = -igg(\left(rac{m_f \cdot G}{\gamma_f \cdot A_{Jet}}
ight) - V_{absolute} igg)$

Open Calculator 🚰

 $ag{10.09924 m/s} = -igg(igg(rac{0.9 ext{kg} \cdot 10}{9.81 ext{kN/m}^3 \cdot 1.2 ext{m}^2}igg) - 10.1 ext{m/s}igg)$

19) Velocity of jet given dynamic thrust exerted by jet on plate

Open Calculator 🗗

 $ext{ex} \left[10.07235 ext{m/s} = - \left(\sqrt{rac{0.9 ext{kg} \cdot 10}{9.81 ext{kN/m}^3 \cdot 1.2 ext{m}^2}} - 10.1 ext{m/s}
ight)$

20) Work Done by Jet on Plate per Second

Open Calculator

 $\boxed{ 1.917528 \text{KJ} = \frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left(10.1 \text{m/s} - 9.69 \text{m/s}\right)^2 \cdot 9.69 \text{m/s}}{10} }$

Cross Sectional Area

21) Cross Sectional Area given Dynamic Thrust Exerted by Jet on Plate

Open Calculator

 $= \frac{0.9 \text{kg} \cdot 10}{9.81 \text{kN/m}^3 \cdot (10.1 \text{m/s} - 9.69 \text{m/s})^2}$

22) Cross Sectional Area given Mass of Fluid Striking Plate

$$egin{equation} \mathbf{K} \mathbf{A}_{\mathrm{Jet}} = rac{\mathbf{m_f} \cdot \mathbf{G}}{\gamma_{\mathrm{f}} \cdot (\mathbf{V}_{\mathrm{absolute}} - \mathbf{v})} \ . \end{split}$$

$$\mathbf{ex} = \frac{0.9 \mathrm{kg} \cdot 10}{9.81 \mathrm{kN/m^3} \cdot (10.1 \mathrm{m/s} - 9.69 \mathrm{m/s})}$$

23) Cross Sectional Area given Work Done by Jet on Plate per Second

$$\mathbf{\hat{x}} egin{equation} \mathbf{A}_{\mathrm{Jet}} = rac{\mathbf{w} \cdot \mathbf{G}}{\gamma_{\mathrm{f}} \cdot \left(\mathrm{V}_{\mathrm{absolute}} - \mathrm{v}
ight)^2 \cdot \mathrm{v}} \end{gathered}$$

$$\boxed{ 2.440642 m^2 = \frac{3.9 \text{KJ} \cdot 10}{9.81 \text{kN/m}^3 \cdot \left(10.1 \text{m/s} - 9.69 \text{m/s}\right)^2 \cdot 9.69 \text{m/s} } }$$

Variables Used

- ∠D Angle between Jet and Plate (Degree)
- A_{Jet} Cross Sectional Area of Jet (Square Meter)
- **Ft** Thrust Force (Kilonewton)
- · G Specific Gravity of Fluid
- m_f Fluid Mass (Kilogram)
- **v** Velocity of Jet (Meter per Second)
- Vabsolute Absolute Velocity of Issuing Jet (Meter per Second)
- V_i Jet Velocity (Meter per Second)
- V_{iet} Fluid Jet Velocity (Meter per Second)
- W Work Done (Kilojoule)
- Vf Specific Weight of Liquid (Kilonewton per Cubic Meter)
- η Efficiency of Jet
- θ Theta (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

 Archimedes' constant
- Function: cos, cos(Angle)

 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Energy in Kilojoule (KJ)
 Energy Unit Conversion
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion
- Measurement: **Specific Weight** in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion

Check other formula lists

- Force Exerted by Fluid Jet on Moving Curved Vane Formulas
- Force Exerted by Fluid Jet on Moving Flat Plate Formulas
- Force Exerted by Fluid Jet on Stationary Flat Plate Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/9/2024 | 7:11:24 AM UTC

Please leave your feedback here...

