unitsconverters.com

Rhombicosidodecahedron Formule

Calcolatrici!

Segnalibro calculatoratoz.com, unitsconverters.com
La più ampia copertura di calcolatricie in crescita - 30.000+ calcolatrici!
Calcola con un'unità diversa per ogni variabile - Nella conversione di unità costruita!
La più ampia raccolta di misure e unità - 250+ misurazioni!

Sentiti libero di CONDIVIDERE questo documento con i tuoi amici!

Si prega di lasciare il tuo feedback qui...

Lista di 30 Rhombicosidodecahedron Formule

Rhombicosidodecahedron

Lunghezza del bordo del rombicosidodecaedro

1) Lunghezza del bordo del rombicosidodecaedro data la superficie totale

$$
1_{\mathrm{e}}=\sqrt{\frac{\text { TSA }}{30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})}}
$$

ex $9.97417 \mathrm{~m}=$

$$
\sqrt{\frac{5900 \mathrm{~m}^{2}}{30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})}}
$$

2) Lunghezza del bordo del rombicosidodecaedro dato il raggio della circonferenza
$\mathrm{fx} \mathrm{l}_{\mathrm{e}}=\frac{2 \cdot \mathrm{r}_{\mathrm{c}}}{\sqrt{11+(4 \cdot \sqrt{5})}}$

$$
9.852435 \mathrm{~m}=\frac{2 \cdot 22 \mathrm{~m}}{\sqrt{11+(4 \cdot \sqrt{5})}}
$$

3) Lunghezza del bordo del rombicosidodecaedro dato il raggio della sfera media
$f x l_{\mathrm{e}}=\frac{2 \cdot \mathrm{r}_{\mathrm{m}}}{\sqrt{10+(4 \cdot \sqrt{5})}}$
ex $9.649623 \mathrm{~m}=\frac{2 \cdot 21 \mathrm{~m}}{\sqrt{10+(4 \cdot \sqrt{5})}}$
4) Lunghezza del bordo del rombicosidodecaedro dato il rapporto tra superficie e volume
$f \times l_{\mathrm{e}}=\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{\mathrm{R}_{\mathrm{A} / \mathrm{V}} \cdot(60+(29 \cdot \sqrt{5}))}$
ex
$14.251 \mathrm{~m}=\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{0.1 \mathrm{~m}^{-1} \cdot(60+(29 \cdot \sqrt{5}))}$
5) Lunghezza del bordo del rombicosidodecaedro dato il volume
$f \times l_{\mathrm{e}}=\left(\frac{3 \cdot \mathrm{~V}}{60+(29 \cdot \sqrt{5})}\right)^{\frac{1}{3}}$
ex $10.03072 \mathrm{~m}=\left(\frac{3 \cdot 42000 \mathrm{~m}^{3}}{60+(29 \cdot \sqrt{5})}\right)^{\frac{1}{3}}$

Raggio del rombicosidodecaedro ©

Raggio della circonferenza del rombicosidodecaedro

6) Raggio della circonferenza del rombicosidodecaedro
$f \mathrm{f} \mathrm{r}_{\mathrm{c}}=\frac{\sqrt{11+(4 \cdot \sqrt{5})}}{2} \cdot l_{e}$
$\mathrm{ex} 22.32951 \mathrm{~m}=\frac{\sqrt{11+(4 \cdot \sqrt{5})}}{2} \cdot 10 \mathrm{~m}$
7) Raggio della circonferenza del rombicosidodecaedro data la superficie totale
$\mathrm{fx} \mathrm{r}_{\mathrm{c}}=\frac{\sqrt{11+(4 \cdot \sqrt{5})}}{2} \cdot \sqrt{\frac{\mathrm{TSA}}{30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})}}$
Apri Calcolatrice ©
$\operatorname{ex} 22.27183 \mathrm{~m}=\frac{\sqrt{11+(4 \cdot \sqrt{5})}}{2} \cdot \sqrt{\frac{5900 \mathrm{~m}^{2}}{30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})}}$
8) Raggio della circonferenza del rombicosidodecaedro dato il raggio della sfera mediana
$f \mathrm{xx} \mathrm{r}_{\mathrm{c}}=\sqrt{11+(4 \cdot \sqrt{5})} \cdot \frac{\mathrm{r}_{\mathrm{m}}}{\sqrt{10+(4 \cdot \sqrt{5})}}$
ex $21.54713 \mathrm{~m}=\sqrt{11+(4 \cdot \sqrt{5})} \cdot \frac{21 \mathrm{~m}}{\sqrt{10+(4 \cdot \sqrt{5})}}$
9) Raggio della circonferenza del rombicosidodecaedro dato il rapporto tra superficie e volume
$f \mathbf{f x} \mathrm{r}_{\mathrm{c}}=\frac{\sqrt{11+(4 \cdot \sqrt{5})}}{2} \cdot \frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{\mathrm{R}_{\mathrm{A} / \mathrm{V}} \cdot(60+(29 \cdot \sqrt{5}))}$
$\operatorname{ex} 31.82177 \mathrm{~m}=\frac{\sqrt{11+(4 \cdot \sqrt{5})}}{2} \cdot \frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{0.1 \mathrm{~m}^{-1} \cdot(60+(29 \cdot \sqrt{5}))}$
10) Raggio della circonferenza del rombicosidodecaedro dato il volume
$\mathrm{fx}_{\mathrm{r}}=\frac{\sqrt{11+(4 \cdot \sqrt{5})}}{2} \cdot\left(\frac{3 \cdot \mathrm{~V}}{60+(29 \cdot \sqrt{5})}\right)^{\frac{1}{3}}$
$\operatorname{ex} 22.3981 \mathrm{~m}=\frac{\sqrt{11+(4 \cdot \sqrt{5})}}{2} \cdot\left(\frac{3 \cdot 42000 \mathrm{~m}^{3}}{60+(29 \cdot \sqrt{5})}\right)^{\frac{1}{3}}$

Raggio medio di rombicosidodecaedro

11) Raggio medio del rombicosidodecaedro data la superficie totale
$f \mathrm{f} \mathrm{r}_{\mathrm{m}}=\frac{\sqrt{10+(4 \cdot \sqrt{5})}}{2} \cdot \sqrt{\frac{\mathrm{TSA}}{30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})}}$
ex $21.7063 \mathrm{~m}=\frac{\sqrt{10+(4 \cdot \sqrt{5})}}{2} \cdot \sqrt{\frac{5900 \mathrm{~m}^{2}}{30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})}}$
12) Raggio medio del rombicosidodecaedro dato il raggio della circonferenza
$\mathrm{fx} \mathrm{r}_{\mathrm{m}}=\sqrt{10+(4 \cdot \sqrt{5})} \cdot \frac{\mathrm{r}_{\mathrm{c}}}{\sqrt{11+(4 \cdot \sqrt{5})}}$
ex $21.44137 \mathrm{~m}=\sqrt{10+(4 \cdot \sqrt{5})} \cdot \frac{22 \mathrm{~m}}{\sqrt{11+(4 \cdot \sqrt{5})}}$
13) Raggio medio del rombicosidodecaedro dato il rapporto tra superficie e volume
$\mathrm{fx}_{\mathrm{f}} \mathrm{r}_{\mathrm{m}}=\frac{\sqrt{10+(4 \cdot \sqrt{5})}}{2} \cdot \frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{\mathrm{R}_{\mathrm{A} / \mathrm{V}} \cdot(60+(29 \cdot \sqrt{5}))}$
Apri Calcolatrice
$\mathrm{ex} 31.01374 \mathrm{~m}=\frac{\sqrt{10+(4 \cdot \sqrt{5})}}{2} \cdot \frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{0.1 \mathrm{~m}^{-1} \cdot(60+(29 \cdot \sqrt{5}))}$
14) Raggio medio del rombicosidodecaedro dato il volume
$\mathrm{fx} \mathrm{r}_{\mathrm{m}}=\frac{\sqrt{10+(4 \cdot \sqrt{5})}}{2} \cdot\left(\frac{3 \cdot \mathrm{~V}}{60+(29 \cdot \sqrt{5})}\right)^{\frac{1}{3}}$
$\operatorname{ex} 21.82936 \mathrm{~m}=\frac{\sqrt{10+(4 \cdot \sqrt{5})}}{2} \cdot\left(\frac{3 \cdot 42000 \mathrm{~m}^{3}}{60+(29 \cdot \sqrt{5})}\right)^{\frac{1}{3}}$
15) Raggio medio di rombicosidodecaedro
$\mathrm{fx} \mathrm{r}_{\mathrm{m}}=\frac{\sqrt{10+(4 \cdot \sqrt{5})}}{2} \cdot l_{\mathrm{e}}$

Superficie del rombicosidodecaedro

Superficie totale del rombicosidodecaedro

16) Superficie totale del rombicosidodecaedro
$\mathrm{fx} \operatorname{TSA}=(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})) \cdot \mathrm{l}_{\mathrm{e}}^{2}$
ex $5930.598 \mathrm{~m}^{2}=(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})) \cdot(10 \mathrm{~m})^{2}$
17) Superficie totale del rombicosidodecaedro dato il raggio della circonferenza
fx
$\left.\mathrm{TSA}=(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})) \cdot\left(\frac{2 \cdot \mathrm{r}_{\mathrm{c}}}{\sqrt{11+(4 \cdot \sqrt{5})}}\right)^{2}\right)^{2}$
ex $5756.86 \mathrm{~m}^{2}=(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})) \cdot\left(\frac{2 \cdot 22 \mathrm{~m}}{\sqrt{11+(4 \cdot \sqrt{5})}}\right)^{2}$
18) Superficie totale del rombicosidodecaedro dato il raggio della sfera media
$f \mathrm{f}$
$\left.\mathrm{TSA}=(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})) \cdot\left(\frac{2 \cdot \mathrm{r}_{\mathrm{m}}}{\sqrt{10+(4 \cdot \sqrt{5})}}\right)^{2}\right)^{2}$
$\operatorname{ex} 5522.289 \mathrm{~m}^{2}=(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})) \cdot\left(\frac{2 \cdot 21 \mathrm{~m}}{\sqrt{10+(4 \cdot \sqrt{5})}}\right)^{2}$
19) Superficie totale del rombicosidodecaedro dato il rapporto superficie/volume
$\mathrm{TSA}=(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})) \cdot\left(\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+}}{\mathrm{R}_{\mathrm{A} / \mathrm{V}} \cdot(60+(29 \cdot \sqrt{5}}\right.$
ex
$12044.51 \mathrm{~m}^{2}=(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})) \cdot\left(\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}}{0.1 \mathrm{~m}^{-1} \cdot(60+(29 \cdot \sqrt{5}))}\right.$,
20) Superficie totale del rombicosidodecaedro dato il volume
$f x$
$\operatorname{TSA}=(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})) \cdot\left(\frac{3 \cdot \mathrm{~V}}{60+(29 \cdot \sqrt{5})}\right)^{\frac{2}{3}}$
ex $5967.089 \mathrm{~m}^{2}=(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})) \cdot\left(\frac{3 \cdot 42000 \mathrm{~m}^{3}}{60+(29 \cdot \sqrt{5})}\right)^{\frac{2}{3}}$
Rapporto superficie/volume del rombicosidodecaedro [
21) Rapporto superficie/volume del rombicosidodecaedro

$$
\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{1_{\mathrm{e}} \cdot(60+(29 \cdot \sqrt{5}))}
$$

$f \times R_{A / V}=$
ex $0.14251 \mathrm{~m}^{-1}=$

$$
\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{10 \mathrm{~m} \cdot(60+(29 \cdot \sqrt{5}))}
$$

22) Rapporto superficie/volume del rombicosidodecaedro data la superficie totale

$$
\mathrm{R}_{\mathrm{A} / \mathrm{V}}=\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{\sqrt{\frac{\mathrm{TSA}}{30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})}} \cdot(60+(29 \cdot \sqrt{5}))}
$$

ex

$$
\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{\sqrt{\frac{5900 \mathrm{~m}^{2}}{30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})}} \cdot(60+(29 \cdot \sqrt{5}))}
$$

23) Rapporto superficie/volume del rombicosidodecaedro dato il raggio della circonferenza
$\mathrm{fx}_{\mathrm{A} / \mathrm{V}}=$

$$
\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10} \cdot}{\frac{2 \cdot \mathrm{r}_{\mathrm{c}}}{\sqrt{11+(4 \cdot \sqrt{5})}} \cdot(60+(29 \cdot \sqrt{5}))}
$$

ex $0.144644 \mathrm{~m}^{-1}=$

$$
\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{\frac{2 \cdot 22 \mathrm{~m}}{\sqrt{11+(4 \cdot \sqrt{5})}} \cdot(60+(29 \cdot \sqrt{5}))}
$$

24) Rapporto superficie/volume del rombicosidodecaedro dato il raggio della sfera media

$$
3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))
$$

$\mathrm{fx}_{\mathrm{A}} \mathrm{R}_{\mathrm{A} / \mathrm{V}}=$

$$
\frac{2 \cdot \mathrm{r}_{\mathrm{m}}}{\sqrt{10+(4 \cdot \sqrt{5})}} \cdot(60+(29 \cdot \sqrt{5}))
$$

ex 0
$0.147684 \mathrm{~m}^{-1}=\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{\frac{2 \cdot 21 \mathrm{~m}}{\sqrt{10+(4 \cdot \sqrt{5})}} \cdot(60+(29 \cdot \sqrt{5}))}$
25) Rapporto superficie/volume del rombicosidodecaedro dato il volume

$$
\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{\frac{1}{2}}
$$

ex $0.142074 \mathrm{~m}^{-1}=$

$$
\left(\frac{3 \cdot \mathrm{~V}}{60+(29 \cdot \sqrt{5})}\right)^{\frac{1}{3}} \cdot(60+(29 \cdot \sqrt{5}))
$$

$$
3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))
$$

$$
\left(\frac{3 \cdot 42000 \mathrm{~m}^{3}}{60+(29 \cdot \sqrt{5})}\right)^{\frac{1}{3}} \cdot(60+(29 \cdot \sqrt{5}))
$$

Volume di rombicosidodecaedro ©

26) Volume del rombicosidodecaedro
$\mathrm{V}=\frac{60+(29 \cdot \sqrt{5})}{3} \cdot l_{\mathrm{e}}^{3}$
$\mathbf{x} 41615.32 \mathrm{~m}^{3}=\frac{60+(29 \cdot \sqrt{5})}{3} \cdot(10 \mathrm{~m})^{3}$
27) Volume del rombicosidodecaedro data la superficie totale
$\left.f \mathrm{fx} \mathrm{V}=\frac{60+(29 \cdot \sqrt{5})}{3} \cdot\left(\sqrt{\frac{\mathrm{TSA}}{30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})}}\right)^{3}\right)$
$\operatorname{ex} 41293.67 \mathrm{~m}^{3}=\frac{60+(29 \cdot \sqrt{5})}{3} \cdot\left(\sqrt{\frac{5900 \mathrm{~m}^{2}}{30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})})}}\right)^{3}$
28) Volume del rombicosidodecaedro dato il raggio della circonferenza
f* $\mathrm{V}=\frac{60+(29 \cdot \sqrt{5})}{3} \cdot\left(\frac{2 \cdot \mathrm{r}_{\mathrm{c}}}{\sqrt{11+(4 \cdot \sqrt{5})}}\right)^{3}$
ex $39800.09 \mathrm{~m}^{3}=\frac{60+(29 \cdot \sqrt{5})}{3} \cdot\left(\frac{2 \cdot 22 \mathrm{~m}}{\sqrt{11+(4 \cdot \sqrt{5})}}\right)^{3}$
29) Volume del rombicosidodecaedro dato il raggio della sfera media
$\mathbf{f x} \mathrm{V}=\frac{60+(29 \cdot \sqrt{5})}{3} \cdot\left(\frac{2 \cdot \mathrm{r}_{\mathrm{m}}}{\sqrt{10+(4 \cdot \sqrt{5})}}\right)^{3}$
$\operatorname{ex} 37392.48 \mathrm{~m}^{3}=\frac{60+(29 \cdot \sqrt{5})}{3} \cdot\left(\frac{2 \cdot 21 \mathrm{~m}}{\sqrt{10+(4 \cdot \sqrt{5})}}\right)^{3}$
30) Volume del rombicosidodecaedro dato il rapporto superficie/volume
fx
$\left.\mathrm{V}=\frac{60+(29 \cdot \sqrt{5})}{3} \cdot\left(\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{\mathrm{R}_{\mathrm{A} / \mathrm{V}} \cdot(60+(29 \cdot \sqrt{5}))}\right)^{3}\right)$
ex $120445.1 \mathrm{~m}^{3}=\frac{60+(29 \cdot \sqrt{5})}{3} \cdot\left(\frac{3 \cdot(30+(5 \cdot \sqrt{3})+(3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}))}{0.1 \mathrm{~m}^{-1} \cdot(60+(29 \cdot \sqrt{5}))}\right)^{3}$

Variabili utilizzate

- $\mathbf{I}_{\mathbf{e}}$ Lunghezza del bordo del rombicosidodecaedro (metro)
- $\mathbf{R}_{\mathbf{A} / \mathbf{V}}$ Rapporto superficie/volume del rombicosidodecaedro (1 al metro)
- $\mathbf{r}_{\mathbf{c}}$ Raggio della circonferenza del rombicosidodecaedro (metro)
- $\mathbf{r}_{\mathbf{m}}$ Raggio medio di rombicosidodecaedro (metro)
- TSA Superficie totale del rombicosidodecaedro (Metro quadrato)
- V Volume di rombicosidodecaedro (Metro cubo)

Costanti, Funzioni, Misure utilizzate

- Funzione: sqrt, sqrt(Number)

Square root function

- Misurazione: Lunghezza in metro (m)

Lunghezza Conversione unità 【

- Misurazione: Volume in Metro cubo $\left(\mathrm{m}^{3}\right)$

Volume Conversione unità

- Misurazione: La zona in Metro quadrato $\left(\mathrm{m}^{2}\right)$

La zona Conversione unità

- Misurazione: Lunghezza reciproca in 1 al metro $\left(\mathrm{m}^{-1}\right)$

Lunghezza reciproca Conversione unità

Controlla altri elenchi di formule

- Icosidodecaedro Formule
- Rhombicosidodecahedron Formule $\mathbb{\Omega}$
- Rhombicubottaedron Formule
- Snub Cube Formule
- Snub dodecaedro Formule
- Cubo troncato Formule

- Cubottaedro troncato Formule
- Dodecaedro troncato Formule

U

- Icosaedro troncato Formule
- Icosidodecaedro troncato Formule
- Tetraedro troncato Formule

Sentiti libero di CONDIVIDERE questo documento con i tuoi amici!

PDF Disponibile in

English Spanish French German Russian Italian Portuguese Polish Dutch

