

Specific Energy and Critical Depth Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Specific Energy and Critical Depth Formulas

Specific Energy and Critical Depth &

1) Area of Section Considering Condition of Maximum Discharge

$$\mathbf{K} egin{equation} \mathbf{A}_{\mathrm{cs}} = \left(\mathbf{Q} \cdot \mathbf{Q} \cdot rac{\mathbf{T}}{[\mathrm{g}]}
ight)^{rac{1}{3}} \end{aligned}$$

$$oxed{ex} 3.475241 \mathrm{m}^2 = \left(14 \mathrm{m}^3/\mathrm{s} \cdot 14 \mathrm{m}^3/\mathrm{s} \cdot rac{2.1 \mathrm{m}}{[\mathrm{g}]}
ight)^{rac{1}{3}}$$

2) Area of Section given Discharge

$$oldsymbol{A}_{
m cs} = rac{
m Q}{\sqrt{2\cdot [
m g}]\cdot (
m E_{
m total} -
m d_{
m f})}$$

ex
$$1.37314 \mathrm{m}^2 = rac{14 \mathrm{m}^3/\mathrm{s}}{\sqrt{2 \cdot [\mathrm{g}] \cdot (8.6 \mathrm{J} - 3.3 \mathrm{m})}}$$

3) Area of Section of Open Channel Considering Condition of Minimum Specific Energy

 $oxed{\mathbf{A}_{\mathrm{cs}} = \left(\mathbf{Q} \cdot rac{\mathbf{T}}{\left[\mathbf{g}
ight]}
ight)^{rac{1}{3}}}$

Open Calculator 🚰

 $oxed{ex} 1.441923 \mathrm{m}^{_2} = \left(14 \mathrm{m}^{_3}/\mathrm{s} \cdot rac{2.1 \mathrm{m}}{[\mathrm{g}]}
ight)^{rac{1}{3}}$

4) Datum Height for Total Energy per unit Weight of Water in Flow Section

 $\mathbf{x} = \mathrm{E}_{\mathrm{total}} - \left(\left(rac{\mathrm{V}_{\mathrm{mean}}^2}{2 \cdot [\mathrm{g}]}
ight) + \mathrm{d}_\mathrm{f}
ight)$

Open Calculator 🗗

 $oxed{ex} 98.93746 \mathrm{mm} = 8.6 \mathrm{J} - \left(\left(rac{\left(10.1 \mathrm{m/s}
ight)^2}{2 \cdot [\mathrm{g}]}
ight) + 3.3 \mathrm{m}
ight)$

5) Depth of Flow given Discharge

 \mathbf{f} $\mathbf{d}_{\mathrm{f}} = \mathrm{E}_{\mathrm{total}} - \left(rac{\left(rac{\mathrm{Q}}{\mathrm{A}_{\mathrm{cs}}}
ight)^{2}}{2\cdot[\mathrm{g}]}
ight)$

Open Calculator 🖸

 $ext{ex} \left[7.735535 ext{m} = 8.6 ext{J} - \left(rac{\left(rac{14 ext{m}^3/ ext{s}}{3.4 ext{m}^2}
ight)^2}{2 \cdot [ext{g}]}
ight)$

6) Depth of Flow given Total Energy in Flow Section taking Bed Slope as Datum

 \mathbf{f} $\mathbf{d}_{\mathrm{f}} = \mathrm{E}_{\mathrm{total}} - \left(\left(rac{\mathrm{V}_{\mathrm{mean}}^2}{2 \cdot [\mathrm{g}]}
ight)
ight)$

Open Calculator 🚰

 $= 3.398937 \mathrm{m} = 8.6 \mathrm{J} - \left(\left(\frac{\left(10.1 \mathrm{m/s} \right)^2}{2 \cdot [\mathrm{g}]} \right) \right)$

7) Depth of Flow given Total Energy per Unit Weight of Water in Flow Section

 $\left| \mathbf{d}_{\mathrm{f}} = \mathrm{E}_{\mathrm{total}} - \left(\left(rac{\mathrm{V}_{\mathrm{mean}}^2}{2 \cdot [\mathrm{g}]}
ight) + \mathrm{y}
ight)$

Open Calculator 🗗

 $oxed{ex} 3.358937 \mathrm{m} = 8.6 \mathrm{J} - \left(\left(rac{\left(10.1 \mathrm{m/s}
ight)^2}{2 \cdot [\mathrm{g}]}
ight) + 40 \mathrm{mm}
ight)$

8) Diameter of Section given Froude Number

fx $d_{
m section} = rac{\left(rac{
m V_{FN}}{
m Fr}
ight)^2}{\lceil arphi
ceil}$

Open Calculator

 $oxed{ex} 4.996609 \mathrm{m} = rac{\left(rac{70 \mathrm{m/s}}{10}
ight)^2}{[\mathrm{g}]}$

9) Diameter of Section through Section Considering Condition of Minimum Specific Energy

 \mathbf{f} $\mathbf{d}_{\mathrm{section}} = rac{V_{\mathrm{mean}}^2}{[\mathrm{g}]}$

Open Calculator 🚰

 $= 10.40213 \text{m} = \frac{(10.1 \text{m/s})^2}{[\text{g}]}$

10) Discharge through Area

 $extstyle Q = \sqrt{2 \cdot [ext{g}] \cdot extstyle A_{ ext{cs}}^2 \cdot (ext{E}_{ ext{total}} - ext{d}_{ ext{f}})}$

Open Calculator

 $oxed{ex} 34.66508 \mathrm{m}^{_{3}}/\mathrm{s} = \sqrt{2 \cdot [\mathrm{g}] \cdot (3.4 \mathrm{m}^{_{2}})^{^{2}} \cdot (8.6 \mathrm{J} - 3.3 \mathrm{m})}$

11) Discharge through Section Considering Condition of Maximum Discharge

 $extbf{Q} = \sqrt{\left(A_{cs}^3
ight)\cdotrac{[g]}{T}}$

Open Calculator 🚰

 $ext{ex} 13.54781 ext{m}^3/ ext{s} = \sqrt{\left((3.4 ext{m}^2)^3
ight)\cdotrac{[ext{g}]}{2.1 ext{m}}}$

12) Discharge through Section Considering Condition of Minimum Specific Energy

 $oxed{\mathbf{Q}} = \sqrt{\left(\mathrm{A_{cs}^3}
ight) \cdot rac{[\mathrm{g}]}{\mathrm{T}}}$

Open Calculator 🗗

 $ext{ex} \ 13.54781 ext{m}^3/ ext{s} = \sqrt{\left((3.4 ext{m}^2)^3
ight) \cdot rac{[ext{g}]}{2.1 ext{m}}}$

13) Froude Number given Velocity

 $ext{Fr} = rac{ ext{V}_{ ext{FN}}}{\sqrt{[ext{g}] \cdot ext{d}_{ ext{section}}}}$

Open Calculator

 $oxed{ ext{ex}}9.996609 = rac{70 ext{m/s}}{\sqrt{ ext{[g]} \cdot 5 ext{m}}}$

14) Mean Velocity of Flow for Total Energy per Unit Weight of Water in Flow Section

 $V_{
m mean} = \sqrt{\left(E_{
m total} - (d_f + y)
ight) \cdot 2 \cdot [g]}$

Open Calculator 🚰

 $ext{ex} \ 10.15706 ext{m/s} = \sqrt{(8.6 ext{J} - (3.3 ext{m} + 40 ext{mm})) \cdot 2 \cdot [ext{g}]}$

15) Mean Velocity of Flow given Froude Number 🖸

 $\left[V_{
m FN} = {
m Fr} \cdot \sqrt{{
m d}_{
m section} \cdot [{
m g}]}
ight]$

Open Calculator 🖒

 $oxed{ex} 70.02375 \mathrm{m/s} = 10 \cdot \sqrt{5 \mathrm{m} \cdot [\mathrm{g}]}$

16) Mean Velocity of flow given Total Energy in flow section taking Bed Slope as Datum

 $V_{
m mean} = \sqrt{\left(E_{
m total} - (d_{
m f})
ight) \cdot 2 \cdot [g]}$

Open Calculator 🗗

 $extbf{ex} 10.19561 ext{m/s} = \sqrt{(8.6 ext{J} - (3.3 ext{m})) \cdot 2 \cdot [ext{g}]}$

17) Mean Velocity of Flow through Section Considering Condition of Minimum Specific Energy

 $\left| V_{mean} = \sqrt{[g] \cdot d_{section}}
ight|$

Open Calculator

 $extstyle \mathbf{ex} \left[7.002375 ext{m/s} = \sqrt{[ext{g}] \cdot 5 ext{m}}
ight]$

18) Top Width of Section Considering Condition of Maximum Discharge 🖒

 $\mathbf{T} = \sqrt{\left(\mathrm{A_{cs}^3}
ight) \cdot rac{[\mathrm{g}]}{\mathrm{Q}}}$

Open Calculator 🗗

$$= \sqrt{\left((3.4 m^2)^3 \right) \cdot \frac{[g]}{14 m^3/s} }$$

19) Top Width of Section through Section Considering Condition of Minimum Specific Energy

 $\mathbf{T} = \left(\left(\mathbf{A}_{\mathrm{cs}}^3
ight) \cdot rac{[\mathrm{g}]}{\mathrm{Q}}
ight)$

Open Calculator 🗗

$$oxed{ex} 27.53147 \mathrm{m} = \left(\left((3.4 \mathrm{m}^2)^3
ight) \cdot rac{ \left[\mathrm{g}
ight]}{14 \mathrm{m}^3 / \mathrm{s}}
ight)$$

20) Total Energy per unit Weight of Water in Flow Section

Open Calculator

$$oxed{ex} 8.541063 \mathrm{J} = \left(rac{\left(10.1 \mathrm{m/s}
ight)^2}{2 \cdot [\mathrm{g}]}
ight) + 3.3 \mathrm{m} + 40 \mathrm{mm}$$

21) Total Energy per unit Weight of Water in Flow Section considering Bed Slope as Datum

 $\mathbf{E}_{ ext{total}} = \left(rac{V_{ ext{FN}}^2}{2\cdot[g]}
ight) + d_f$

Open Calculator

 $oxed{ex} 253.1305 \mathrm{J} = \left(rac{\left(70 \mathrm{m/s}
ight)^2}{2 \cdot [\mathrm{g}]}
ight) + 3.3 \mathrm{m}^2}$

22) Total Energy per unit Weight of Water in Flow Section given Discharge

 $\mathbf{E}_{ ext{total}} = d_{ ext{f}} + \left(rac{\left(rac{ ext{Q}}{ ext{A}_{ ext{cs}}}
ight)^2}{2\cdot[ext{g}]}
ight)$

Open Calculator 🗗

 $oxed{egin{aligned} egin{aligned} \mathbf{ex} \end{bmatrix} 4.164465 \mathbf{J} = 3.3 \mathbf{m} + \left(rac{\left(rac{14 \mathbf{m}^3/\mathbf{s}}{3.4 \mathbf{m}^2}
ight)^2}{2 \cdot [\mathbf{g}]}
ight) \end{aligned}}$

23) Volume of Liquid Considering Condition of Maximum Discharge 🛂

 $extstyle V ext{w} = \sqrt{\left(ext{A}_{ ext{cs}}^3
ight) \cdot rac{[ext{g}]}{ ext{T}} \cdot \Delta ext{t}}$

Open Calculator 🗗

ex 16.93476m³ = $\sqrt{\left((3.4$ m² $)^3\right) \cdot \frac{[g]}{2.1}} \cdot 1.25$ s

Variables Used

- A_{cs} Cross-Sectional Area of Channel (Square Meter)
- d_f Depth of Flow (Meter)
- d_{section} Diameter of Section (Meter)
- Etotal Total Energy (Joule)
- Fr Froude Number
- Q Discharge of Channel (Cubic Meter per Second)
- **T** Top Width (Meter)
- V_{FN} Mean Velocity for Froude Number (Meter per Second)
- V_{mean} Mean Velocity (Meter per Second)
- Vw Volume of Water (Cubic Meter)
- **V** Height above Datum (Millimeter)
- Δt Time Interval (Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665

 Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m), Millimeter (mm)

 Length Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Volume in Cubic Meter (m³)
 Volume Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Energy in Joule (J)
 Energy Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion

Check other formula lists

- Computation of Uniform Flow Formulas
- Critical Flow and its Computation
 Formulas
- Geometrical Properties of Channel Section Formulas
- Metering Flumes and Momentum in Open Channel Flow Specific
 Force Formulas
- Specific Energy and Critical Depth Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/9/2024 | 6:51:45 AM UTC

Please leave your feedback here...

