

Specific Energy and Critical Depth Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Specific Energy and Critical Depth Formulas

Specific Energy and Critical Depth 🗗

1) Area of Section Considering Condition of Maximum Discharge

Open Calculator

$$\mathbf{K} egin{aligned} \mathbf{A}_{\mathrm{cs}} &= \left(\mathbf{Q} \cdot \mathbf{Q} \cdot rac{\mathbf{T}}{[\mathbf{g}]}
ight)^{rac{1}{3}} \end{aligned}$$

ex
$$3.475241 \mathrm{m}^2 = \left(14 \mathrm{m}^3/\mathrm{s} \cdot 14 \mathrm{m}^3/\mathrm{s} \cdot \frac{2.1 \mathrm{m}}{[\mathrm{g}]}\right)^{\frac{1}{3}}$$

2) Area of Section given Discharge

$$egin{equation} \mathbf{A}_{
m cs} = rac{
m Q}{\sqrt{2 \cdot [
m g] \cdot (E_{
m total} - d_{
m f})}} \ . \end{split}$$

ex
$$1.37314 \mathrm{m}^2 = rac{14 \mathrm{m}^3/\mathrm{s}}{\sqrt{2 \cdot [\mathrm{g}] \cdot (8.6 \mathrm{J} - 3.3 \mathrm{m})}}$$

3) Area of Section of Open Channel Considering Condition of Minimum Specific Energy

 $\left|\mathbf{A}_{\mathrm{cs}} = \left(\mathbf{Q} \cdot rac{\mathbf{T}}{\left[\mathbf{g}
ight]}
ight)^{rac{1}{3}}
ight|$

Open Calculator 🚰

 $oxed{ex} 1.441923 \mathrm{m}^2 = \left(14 \mathrm{m}^3/\mathrm{s} \cdot rac{2.1 \mathrm{m}}{[\mathrm{g}]}
ight)^{rac{1}{3}}$

4) Datum Height for Total Energy per unit Weight of Water in Flow Section

 $\mathbf{x} = \mathrm{E}_{\mathrm{total}} - \left(\left(rac{\mathrm{V}_{\mathrm{mean}}^2}{2 \cdot [\mathrm{g}]}
ight) + \mathrm{d}_\mathrm{f}
ight)$

Open Calculator 🗗

 $oxed{egin{aligned} egin{aligned} \mathbf{ex} \ \mathbf{98.93746mm} = 8.6 \mathrm{J} - \left(\left(rac{\left(10.1 \mathrm{m/s}
ight)^2}{2 \cdot [\mathrm{g}]}
ight) + 3.3 \mathrm{m}
ight) \end{aligned}}$

5) Depth of Flow given Discharge

 $\left| \mathbf{f}_{\mathbf{x}}
ight| \mathrm{d}_{\mathrm{f}} = \mathrm{E}_{\mathrm{total}} - \left(rac{\left(rac{\mathrm{Q}}{\mathrm{A}_{\mathrm{cs}}}
ight)^2}{2 \cdot [\mathrm{g}]}
ight)
ight|$

Open Calculator 🗗

 $ext{ex} \ 7.735535 ext{m} = 8.6 ext{J} - \left(rac{\left(rac{14 ext{m}^3/ ext{s}}{3.4 ext{m}^2}
ight)^2}{2 \cdot [ext{g}]}
ight)$

6) Depth of Flow given Total Energy in Flow Section taking Bed Slope as Datum

 $\left| \mathbf{d}_{\mathrm{f}} = \mathrm{E}_{\mathrm{total}} - \left(\left(rac{\mathrm{V}_{\mathrm{mean}}^2}{2 \cdot [\mathrm{g}]}
ight)
ight)
ight|$

Open Calculator 🚰

$$oxed{\mathbf{gx}} 3.398937 \mathrm{m} = 8.6 \mathrm{J} - \left(\left(rac{\left(10.1 \mathrm{m/s}
ight)^2}{2 \cdot [\mathrm{g}]}
ight)
ight)^{-1}$$

7) Depth of Flow given Total Energy per Unit Weight of Water in Flow Section

 $\left| \mathbf{d}_{\mathrm{f}} = \mathrm{E}_{\mathrm{total}} - \left(\left(rac{\mathrm{V}_{\mathrm{mean}}^2}{2 \cdot [\mathrm{g}]}
ight) + \mathrm{y}
ight)$

Open Calculator 🗗

$$= 3.358937 \mathrm{m} = 8.6 \mathrm{J} - \left(\left(\frac{\left(10.1 \mathrm{m/s} \right)^2}{2 \cdot [\mathrm{g}]} \right) + 40 \mathrm{mm} \right)$$

8) Diameter of Section given Froude Number

Open Calculator

$$oxed{4.996609 ext{m} = rac{\left(rac{70 ext{m/s}}{10}
ight)^2}{[ext{g}]}}$$

9) Diameter of Section through Section Considering Condition of Minimum Specific Energy

 $\mathbf{f}_{\mathbf{x}} \mathbf{d}_{\mathrm{section}} = rac{V_{\mathrm{mean}}^2}{[\mathrm{g}]}$

Open Calculator 🚰

= 10.40213m = $\frac{(10.1$ m/s $)^2}{[g]}$

10) Discharge through Area

 $m Q = \sqrt{2 \cdot [g] \cdot A_{cs}^2 \cdot (E_{total} - d_f)}$

Open Calculator

 $oxed{ex} 34.66508 \mathrm{m}^{_{3}}/\mathrm{s} = \sqrt{2 \cdot [\mathrm{g}] \cdot (3.4 \mathrm{m}^{_{2}})^{^{2}} \cdot (8.6 \mathrm{J} - 3.3 \mathrm{m})}$

11) Discharge through Section Considering Condition of Maximum Discharge

 $extbf{Q} = \sqrt{\left(A_{cs}^3
ight)\cdotrac{[g]}{T}}$

Open Calculator 🚰

 $ext{ex} 13.54781 ext{m}^3/ ext{s} = \sqrt{\left((3.4 ext{m}^2)^3
ight)\cdotrac{[ext{g}]}{2.1 ext{m}}}$

12) Discharge through Section Considering Condition of Minimum Specific Energy

 $oxed{Q} = \sqrt{\left({
m A}_{
m cs}^3
ight) \cdot rac{[{
m g}]}{{
m T}}}$

Open Calculator 🚰

ex $13.54781 \mathrm{m}^3/\mathrm{s} = \sqrt{\left((3.4 \mathrm{m}^2)^3
ight) \cdot rac{[\mathrm{g}]}{2.1 \mathrm{m}}}$

13) Froude Number given Velocity

 $ag{Fr} = rac{
m V_{FN}}{\sqrt{[
m g]\cdot d_{section}}}$

Open Calculator

 $oxed{ex} 9.996609 = rac{70 ext{m/s}}{\sqrt{[ext{g}] \cdot 5 ext{m}}}$

14) Mean Velocity of Flow for Total Energy per Unit Weight of Water in Flow Section

 $V_{
m mean} = \sqrt{\left(E_{
m total} - (d_{
m f} + y)
ight) \cdot 2 \cdot [
m g]}$

Open Calculator 🚰

$$ext{ex} \ 10.15706 ext{m/s} = \sqrt{(8.6 ext{J} - (3.3 ext{m} + 40 ext{mm})) \cdot 2 \cdot [ext{g}]}$$

15) Mean Velocity of Flow given Froude Number 🗗

 $V_{
m FN} = {
m Fr} \cdot \sqrt{{
m d}_{
m section} \cdot [{
m g}]}$

Open Calculator 🖒

 $oxed{ex} 70.02375 \mathrm{m/s} = 10 \cdot \sqrt{5 \mathrm{m} \cdot [\mathrm{g}]}$

16) Mean Velocity of flow given Total Energy in flow section taking Bed Slope as Datum

 $V_{
m mean} = \sqrt{\left(E_{
m total} - (d_{
m f})
ight) \cdot 2 \cdot [g]}$

Open Calculator

 $ext{ex} 10.19561 ext{m/s} = \sqrt{(8.6 ext{J} - (3.3 ext{m})) \cdot 2 \cdot [ext{g}]}$

17) Mean Velocity of Flow through Section Considering Condition of Minimum Specific Energy

 $\left| V_{mean} = \sqrt{[g] \cdot d_{section}}
ight|$

Open Calculator

 $extbf{ex} 7.002375 ext{m/s} = \sqrt{[ext{g}] \cdot 5 ext{m}}$

18) Top Width of Section Considering Condition of Maximum Discharge 🖒

 $\left| \mathbf{f} \mathbf{x}
ight| \mathrm{T} = \sqrt{\left(\mathrm{A}_{\mathrm{cs}}^3
ight) \cdot rac{\left[\mathrm{g}
ight]}{\mathrm{Q}}}
ight|$

Open Calculator 🗗

$$= \sqrt{\left(\left(3.4 \text{m}^2 \right)^3 \right) \cdot \frac{[\text{g}]}{14 \text{m}^3/\text{s}} }$$

19) Top Width of Section through Section Considering Condition of Minimum Specific Energy

 $\mathbf{T} = \left(\left(\mathbf{A}_{\mathrm{cs}}^3
ight) \cdot rac{[\mathrm{g}]}{\mathrm{Q}}
ight)
ight|$

Open Calculator 🗗

$$oxed{ex} 27.53147 \mathrm{m} = \left(\left((3.4 \mathrm{m}^2)^3
ight) \cdot rac{ \left[\mathrm{g}
ight]}{14 \mathrm{m}^3 / \mathrm{s}}
ight)$$

20) Total Energy per unit Weight of Water in Flow Section 🚰

 $\mathbf{E}_{ ext{total}} = \left(rac{ ext{V}_{ ext{mean}}^2}{2\cdot[ext{g}]}
ight) + ext{d}_{ ext{f}} + ext{y}$

Open Calculator

$$oxed{ex} 8.541063 \mathrm{J} = \left(rac{\left(10.1 \mathrm{m/s}
ight)^2}{2 \cdot [\mathrm{g}]}
ight) + 3.3 \mathrm{m} + 40 \mathrm{mm}$$

21) Total Energy per unit Weight of Water in Flow Section considering Bed Slope as Datum

 $\mathbf{E}_{ ext{total}} = \left(rac{V_{ ext{FN}}^2}{2\cdot [ext{g}]}
ight) + d_{ ext{f}}$

Open Calculator 🗗

 $oxed{ex} 253.1305 {
m J} = \left(rac{{{{\left({70 {
m m/s}}
ight)}^2}}}{{2 \cdot {
m [g]}}}
ight) + 3.3 {
m m}$

22) Total Energy per unit Weight of Water in Flow Section given Discharge

 $\mathbf{E}_{ ext{total}} = d_{ ext{f}} + \left(rac{\left(rac{ ext{Q}}{ ext{A}_{ ext{cs}}}
ight)^2}{2\cdot[ext{g}]}
ight)$

Open Calculator 🗗

 $oxed{ex} 4.164465 {
m J} = 3.3 {
m m} + \left(rac{\left(rac{14 {
m m}^3/{
m s}}{3.4 {
m m}^2}
ight)^2}{2 \cdot [{
m g}]}
ight)$

23) Volume of Liquid Considering Condition of Maximum Discharge 🗗

Open Calculator 🗗

 $ext{ex} \ 16.93476 ext{m}^{_3} = \sqrt{\left((3.4 ext{m}^{_2})^3
ight) \cdot rac{[ext{g}]}{2.1 ext{m}}} \cdot 1.25 ext{s}$

Variables Used

- A_{CS} Cross-Sectional Area of Channel (Square Meter)
- d_f Depth of Flow (Meter)
- d_{section} Diameter of Section (Meter)
- Etotal Total Energy (Joule)
- Fr Froude Number
- Q Discharge of Channel (Cubic Meter per Second)
- **T** Top Width (Meter)
- V_{FN} Mean Velocity for Froude Number (Meter per Second)
- V_{mean} Mean Velocity (Meter per Second)
- Vw Volume of Water (Cubic Meter)
- **y** Height above Datum (Millimeter)
- Δt Time Interval (Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second²
 Gravitational acceleration on Farth
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Length in Meter (m), Millimeter (mm)

 Length Unit Conversion
- Measurement: Time in Second (s)
 Time Unit Conversion
- Measurement: Volume in Cubic Meter (m³)
 Volume Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Energy in Joule (J)
 Energy Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion

Check other formula lists

- Computation of Uniform Flow Formulas
- Critical Flow and its Computation
 Formulas
- Geometrical Properties of Channel Section Formulas
- Metering Flumes and Momentum in Open-Channel Flow Specific
 Force Formulas
- Specific Energy and Critical Depth Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

2/1/2024 | 4:32:06 AM UTC

Please leave your feedback here...

