



# Force Exerted by Fluid Jet on Moving Curved Vane Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...





# List of 21 Force Exerted by Fluid Jet on Moving Curved Vane Formulas

# Force Exerted by Fluid Jet on Moving Curved Vane

Jet Striking a Symmetrical Moving Curved Vane at Centre

1) Absolute Velocity for Force Exerted by Jet in Direction of Flow of Incoming Jet

$$V_{absolute} = \left(rac{\sqrt{F \cdot G}}{\gamma_f \cdot A_{Jet} \cdot (1 + \cos( heta))}
ight) + v$$

Open Calculator

$$\boxed{ 9.917616 \text{m/s} = \left( \frac{\sqrt{2.5 \text{N} \cdot 10}}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot (1 + \cos(30°))} \right) + 9.69 \text{m/s} }$$

2) Absolute Velocity for Mass of Fluid Striking Vane per Second

$$V_{absolute} = \left(rac{m_f \cdot G}{\gamma_f \cdot A_{Jet}}
ight) + v$$

Open Calculator

$$ext{ex} 10.45453 ext{m/s} = \left(rac{0.9 ext{kg} \cdot 10}{9.81 ext{kN/m}^3 \cdot 1.2 ext{m}^2}
ight) + 9.69 ext{m/s}$$

3) Efficiency of Jet

$$\eta = \left( (2 \cdot v) \cdot \left( V_{absolute} - v \right)^2 \cdot \left( 1 + \cos(\theta) \right) \right) \cdot rac{100}{V_{absolute}^3}$$

$$\boxed{ 0.590031 = \left( \left( 2 \cdot 9.69 \text{m/s} \right) \cdot \left( 10.1 \text{m/s} - 9.69 \text{m/s} \right)^2 \cdot \left( 1 + \cos(30°) \right) \right) \cdot \frac{100}{\left( 10.1 \text{m/s} \right)^3} }$$



## 4) Kinetic Energy of Jet per Second

 $ext{KE} = rac{ ext{A}_{ ext{Jet}} \cdot ext{v}_{ ext{jet}}^3}{2}$ 

Open Calculator 🗗

$$= 1036.8 \text{J} = \frac{1.2 \text{m}^2 \cdot (12 \text{m/s})^3}{2}$$

## 5) Mass of Fluid Striking Vane per Seconds

 $\mathbf{m}_{\mathrm{f}} = rac{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot (\mathrm{V}_{\mathrm{absolute}} - \mathrm{v})}{\mathrm{G}}$ 

Open Calculator

$$\boxed{ 0.482652 \text{kg} = \frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot (10.1 \text{m/s} - 9.69 \text{m/s})}{10} }$$

# 6) Maximum Efficiency

 $\eta_{ ext{max}} = \left(rac{1}{2}
ight) \cdot \left(1 + \cos( heta)
ight)$ 

Open Calculator

$$oxed{ex} 0.933013 = \left(rac{1}{2}
ight) \cdot \left(1 + \cos(30\degree)
ight)$$

## 7) Velocity of Vane for given Mass of Fluid 🗹

 $v = V_{absolute} - \left(rac{m_f \cdot G}{\gamma_f \cdot A_{Jet}}
ight)$ 

$$\boxed{ 9.335474 \text{m/s} = 10.1 \text{m/s} - \left( \frac{0.9 \text{kg} \cdot 10}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2} \right) }$$



#### 8) Velocity of Vane given Exerted Force by Jet

 $v = - \left( \sqrt{rac{F \cdot G}{\gamma_f \cdot A_{Jet} \cdot (1 + \cos( heta))}} - V_{absolute} 
ight)$ 

Open Calculator

 $= \sqrt{\frac{2.5 \mathrm{N} \cdot 10}{9.81 \mathrm{kN/m^3} \cdot 1.2 \mathrm{m^2} \cdot (1 + \cos(30°))}} - 10.1 \mathrm{m/s}$ 

# 9) Work Done by Jet on Vane per Second

 $\mathbf{w} = \left(rac{\gamma_{
m f} \cdot A_{
m Jet} \cdot (V_{
m absolute} - v)^2}{G}
ight) \cdot (1 + \cos( heta)) \cdot v$ 

Open Calculator

ex

 $3.578156 \mathrm{KJ} = \left(\frac{9.81 \mathrm{kN/m^3 \cdot 1.2m^2 \cdot \left(10.1 \mathrm{m/s} - 9.69 \mathrm{m/s}\right)^2}}{10}\right) \cdot \left(1 + \cos(30^\circ)\right) \cdot 9.69 \mathrm{m/s}$ 

#### 10) Work Done per Second given Efficiency of Wheel

 $\mathbf{f}\mathbf{x} = \mathbf{\eta} \cdot \mathrm{KE}$ 

Open Calculator

 $\text{ex} \ 0.009608 \text{KJ} = 0.80 \cdot 12.01 \text{J}$ 

#### Area of Cross Section

#### 11) Area of Cross Section for Force Exerted by Jet in Direction of Flow

 $\mathbf{A}_{\mathrm{Jet}} = rac{\mathbf{F} \cdot \mathbf{G}}{(1 + \cos( heta)) \cdot \gamma_{\mathrm{f}} \cdot \mathbf{V}_{\mathrm{absolute}} \cdot (\mathbf{V}_{\mathrm{absolute}} - \mathbf{v})}$ 

Open Calculator



#### 12) Area of Cross Section for Force Exerted by Jet with relative velocity

 $\mathbf{A}_{\mathrm{Jet}} = rac{\mathbf{F} \cdot \mathbf{G}}{(1 + \mathbf{a} \cdot \cos( heta)) \cdot \gamma_{\mathrm{f}} \cdot \mathbf{V}_{\mathrm{absolute}} \cdot (\mathbf{V}_{\mathrm{absolute}} - \mathbf{v})}$ 

Open Calculator 🖸

2 5N 10

$$\boxed{ 0.328275 \text{m}^2 = \frac{2.5 \text{N} \cdot 10}{ \left( 1 + 1.01 \cdot \cos(30°) \right) \cdot 9.81 \text{kN/m}^3 \cdot 10.1 \text{m/s} \cdot \left( 10.1 \text{m/s} - 9.69 \text{m/s} \right) } }$$

# 13) Area of Cross Section for Mass of Fluid Striking moving Vane per Second

 $\boxed{\mathbf{A}_{Jet} = \frac{m_f \cdot G}{\gamma_f \cdot \left(V_{absolute} - v\right)}}$ 

Open Calculator

#### 14) Area of Cross Section for work done by Jet on vane per second

 $\mathbf{A}_{\mathrm{Jet}} = rac{\mathbf{w} \cdot \mathbf{G}}{\gamma_{\mathrm{f}} \cdot \left( \mathrm{V}_{\mathrm{absolute}} - \mathrm{v} 
ight)^2 \cdot \left( 1 + \cos( heta) 
ight) \cdot \mathrm{v}}$ 

Open Calculator

## Force Exerted by Jet

## 15) Force Exerted by Jet in Direction of Flow of Incoming Jet with angle at 90 🗗

 $ext{Ft} = \left(rac{\gamma_{
m f}\cdot A_{
m Jet}\cdot (V_{
m absolute}-v)^2}{
m G}
ight)$ 

$$\boxed{ 0.197887 \text{kN} = \left( \frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left( 10.1 \text{m/s} - 9.69 \text{m/s} \right)^2}{10} \right) }$$



#### 16) Force Exerted by Jet in Direction of Flow of Incoming Jet with angle zero

 $\operatorname{Ft} = \left(rac{\gamma_f \cdot A_{\operatorname{Jet}} \cdot \left(V_{\operatorname{absolute}} - v\right)^2}{G}
ight)$ 

Open Calculator 🗗

 $\boxed{ 0.197887 \text{kN} = \left( \frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot \left( 10.1 \text{m/s} - 9.69 \text{m/s} \right)^2}{10} \right) }$ 

#### 17) Force Exerted by Jet in direction of Flow of Jet

 $\mathbf{F}_{\mathrm{s}} = \left( rac{\gamma_{\mathrm{f}} \cdot \mathbf{A}_{\mathrm{Jet}} \cdot \mathbf{V}_{\mathrm{absolute}} \cdot (\mathbf{V}_{\mathrm{absolute}} - \mathbf{v})}{\mathbf{G}} 
ight) \cdot (1 + \cos(\theta))$ 

Open Calculator

 $\boxed{ 9.096473 \text{N} = \left( \frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot 10.1 \text{m/s} \cdot (10.1 \text{m/s} - 9.69 \text{m/s})}{10} \right) \cdot (1 + \cos(30°)) }$ 

#### 18) Force Exerted by jet with relative velocity

 $\mathbf{F}_{\mathrm{s}} = \left(rac{\gamma_{\mathrm{f}} \cdot \mathrm{A}_{\mathrm{Jet}} \cdot \mathrm{V}_{\mathrm{absolute}} \cdot \left(\mathrm{V}_{\mathrm{absolute}} - \mathrm{v}
ight)}{\mathrm{G}}
ight) \cdot \left(1 + \mathrm{a} \cdot \mathrm{cos}(\theta)
ight)$ 

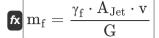
Open Calculator

ех

 $ho = \left(rac{9.81 ext{kN/m}^3 \cdot 1.2 ext{m}^2 \cdot 10.1 ext{m/s} \cdot \left(10.1 ext{m/s} - 9.69 ext{m/s}
ight)}{10}
ight) \cdot \left(1 + 1.01 \cdot \cos(30°)
ight)$ 

# Jet Striking an Unsymmetrical Moving Curved Vane Tangentially at one of the Tips 🗗

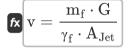
## 19) Area of Cross Section for Mass of Fluid Striking Vane per Second


 $\mathbf{A}_{\mathrm{Jet}} = rac{\mathrm{m_f \cdot G}}{\gamma_{\mathrm{f}} \cdot \mathrm{v}}$ 

Open Calculator 🗗






#### 20) Mass of Fluid Striking Vanes per Second



Open Calculator

$$\boxed{ 11.40707 \text{kg} = \frac{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2 \cdot 9.69 \text{m/s}}{10} }$$

#### 21) Velocity at Inlet for Mass of Fluid Striking Vane per Second



$$\boxed{ 0.764526 m/s = \frac{0.9 kg \cdot 10}{9.81 kN/m^3 \cdot 1.2 m^2} }$$



#### Variables Used

- a Numerical Coefficient a
- A<sub>Jet</sub> Cross Sectional Area of Jet (Square Meter)
- **F** Force exerted by Jet (Newton)
- F<sub>s</sub> Force by Stationary Plate (Newton)
- Ft Thrust Force (Kilonewton)
- · G Specific Gravity of Fluid
- **KE** Kinetic Energy (Joule)
- **m**f Fluid Mass (Kilogram)
- V Velocity of Jet (Meter per Second)
- Vabsolute Absolute Velocity of Issuing Jet (Meter per Second)
- Viet Fluid Jet Velocity (Meter per Second)
- W Work Done (Kilojoule)
- V<sub>f</sub> Specific Weight of Liquid (Kilonewton per Cubic Meter)
- n Efficiency of Jet
- η<sub>max</sub> Maximum Efficiency
- θ Theta (Degree)





#### Constants, Functions, Measurements used

- Function: cos, cos(Angle)

  Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sqrt, sqrt(Number)
   A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Weight in Kilogram (kg)
   Weight Unit Conversion
- Measurement: Area in Square Meter (m²)

  Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)

  Speed Unit Conversion
- Measurement: Energy in Joule (J), Kilojoule (KJ)
   Energy Unit Conversion
- Measurement: Force in Newton (N), Kilonewton (kN)
  Force Unit Conversion
- Measurement: Angle in Degree (°)

  Angle Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)

  Specific Weight Unit Conversion





#### **Check other formula lists**

- Force Exerted by Fluid Jet on Moving Curved Vane Formulas
- Force Exerted by Fluid Jet on Moving Flat Plate Formulas
- Force Exerted by Fluid Jet on Stationary Flat Plate Formulas

Feel free to SHARE this document with your friends!

#### PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/9/2024 | 7:00:52 AM UTC

Please leave your feedback here...



