
calculatoratoz.com

unitsconverters.com

Aircraft Runway Length Estimation Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 25 Aircraft Runway Length Estimation Formulas

Aircraft Runway Length Estimation ©

1) Desired Take off Weight $\sqrt{\square}$
$f \times D=P Y L+O E W+F W$
Open Calculator
ex $36.1 t=25 t+10 t+1.1 t$
2) Fuel Weight to be Carried given Desired Takeoff Weight
$f x$ FW $=\mathrm{D}-\mathrm{PYL}-\mathrm{OEW}$
Open Calculator
ex $1.1 t=36.1 t-25 t-10 t$
3) Lift Coefficient for Lifting Force Provided by Wing Body of Vehicle
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{l}}=\frac{\mathrm{L}_{\text {Aircraft }}}{0.5 \cdot \rho \cdot\left(\mathrm{~V}^{2}\right) \cdot \mathrm{S}}$
Open Calculator
ex $0.001073=\frac{1072.39 \mathrm{kN}}{0.5 \cdot 1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot\left((268 \mathrm{~km} / \mathrm{h})^{2}\right) \cdot 23 \mathrm{~m}^{2}}$
4) Lifting Force given Friction Force due to Rolling Resistance \longleftarrow

$$
\mathrm{L}_{\text {Aircraft }}=\left(\left(\left(\mathrm{M}_{\text {Aircraft }} \cdot[\mathrm{g}] \cdot \cos (\Phi)\right)-\left(\frac{\mathrm{F}_{\text {Friction }}}{\mu_{\mathrm{r}}}\right)\right)\right)
$$

ex $1588.789 \mathrm{kN}=\left(\left((50000 \mathrm{~kg} \cdot[\mathrm{~g}] \cdot \cos (5))-\left(\frac{4125 \mathrm{kN}}{0.03}\right)\right)\right)$
5) Lifting Force Provided by Wing Body of Vehicle
$f \times L_{\text {Aircraft }}=0.5 \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~S} \cdot \mathrm{C}_{\mathrm{l}}$
Open Calculator
ex $999.431 \mathrm{kN}=0.5 \cdot 1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot(268 \mathrm{~km} / \mathrm{h})^{2} \cdot 23 \mathrm{~m}^{2} \cdot 0.001$
6) Operating Empty Weight when Desired Take-off Weight is considered $\boxed{\square}$
$f_{x} \mathrm{OEW}=\mathrm{D}-\mathrm{PYL}-\mathrm{FW}$
ex $10 \mathrm{t}=36.1 \mathrm{t}-25 \mathrm{t}-1.1 \mathrm{t}$
7) Payload carried when desired take-off weight is considered
$f_{\mathrm{x}} \mathrm{PYL}=\mathrm{D}-\mathrm{OEW}-\mathrm{FW}$
ex $25 \mathrm{t}=36.1 \mathrm{t}-10 \mathrm{t}-1.1 \mathrm{t}$
8) Speed of Sound (Mach number)
$\mathrm{f}_{\mathrm{x}}^{\mathrm{x}} \mathrm{c}=\frac{\mathrm{V}_{\mathrm{TAS}}}{\mathrm{M}_{\text {True }}}$
Open Calculator
ex $47.5 \mathrm{~km} / \mathrm{h}=\frac{190 \mathrm{~km} / \mathrm{h}}{4}$
9) True Aircraft Speed (Mach number) $\sqrt{ }$
$f \mathrm{x} \quad \mathrm{V}_{\mathrm{TAS}}=\mathrm{c} \cdot \mathrm{M}_{\text {True }}$
Open Calculator
ex $190 \mathrm{~km} / \mathrm{h}=47.5 \mathrm{~km} / \mathrm{h} \cdot 4$
10) True Mach number when true aircraft speed
$f \times M_{\text {True }}=\frac{V_{\text {TAS }}}{c}$
Open Calculator
ex $4=\frac{190 \mathrm{~km} / \mathrm{h}}{47.5 \mathrm{~km} / \mathrm{h}}$
11) Vehicle Speed for Lifting Force Provided by Wing Body of Vehicle
$\boldsymbol{f}_{\mathrm{x}} \mathrm{V}=\sqrt{\left(\frac{\mathrm{L}_{\text {Aircraft }}}{0.5 \cdot \rho \cdot \mathrm{~S} \cdot \mathrm{C}_{\mathrm{l}}}\right)}$
$\mathrm{ex} 277.6098 \mathrm{~km} / \mathrm{h}=\sqrt{\left(\frac{1072.39 \mathrm{kN}}{0.5 \cdot 1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot 23 \mathrm{~m}^{2} \cdot 0.001}\right)}$

Aerodrome Reference Temperature ©

12) Aerodrome Reference Temperature
$f \mathrm{ART}=\mathrm{T}_{\mathrm{a}}+\left(\frac{\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{a}}}{3}\right)$
Open Calculator
ex $34.82667 \mathrm{~K}=49.5 \mathrm{~K}+\left(\frac{5.48 \mathrm{~K}-49.5 \mathrm{~K}}{3}\right)$
13) Monthly Mean of Average Daily Temperature for given ART
$\mathrm{fx}_{\mathrm{x}} \mathrm{T}_{\mathrm{a}}=\left(\frac{(3 \cdot \mathrm{ART})-\mathrm{T}_{\mathrm{m}}}{2}\right)$
Open Calculator
ex $50 \mathrm{~K}=\left(\frac{(3 \cdot 35.16 \mathrm{~K})-5.48 \mathrm{~K}}{2}\right)$
14) Monthly mean of maximum daily temperature for hottest month of year U
$f \mathrm{f} \mathrm{T}_{\mathrm{m}}=3 \cdot\left(\mathrm{ART}-\mathrm{T}_{\mathrm{a}}\right)+\mathrm{T}_{\mathrm{a}}$
ex $6.48 \mathrm{~K}=3 \cdot(35.16 \mathrm{~K}-49.5 \mathrm{~K})+49.5 \mathrm{~K}$

Aircraft Gross Wing

15) Aircraft Gross Wing Area for Lifting Force Provided by Wing Body of Vehicle
$\mathrm{fx} \mathrm{S}=\frac{\mathrm{L}_{\text {Aircraft }}}{0.5 \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{l}}}$
Open Calculator
ex $24.67901 \mathrm{~m}^{2}=\frac{1072.39 \mathrm{kN}}{0.5 \cdot 1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot(268 \mathrm{~km} / \mathrm{h})^{2} \cdot 0.001}$
16) Aircraft Gross Wing Area given Vehicle Speed under Steady Flight Conditions
$\mathrm{fx}_{\mathrm{S}}^{\mathrm{S}=2 \cdot \mathrm{M}_{\text {Aircraft }} \cdot \frac{[\mathrm{g}]}{\rho \cdot \mathrm{C}_{\mathrm{l}} \cdot \mathrm{V}^{2}}}$
Open Calculator
ex $11284.07 \mathrm{~m}^{2}=2 \cdot 50000 \mathrm{~kg} \cdot \frac{[\mathrm{~g}]}{1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot 0.001 \cdot(268 \mathrm{~km} / \mathrm{h})^{2}}$
17) Aircraft Gross Wing Area given Vehicle Stalling Speed
$f \mathrm{f}=2 \cdot \mathrm{M}_{\text {Aircraft }} \cdot \frac{[\mathrm{g}]}{\mathrm{V}^{2} \cdot \rho \cdot \mathrm{C}_{\mathrm{L}, \max }}$
Open Calculator
ex $12.82281 \mathrm{~m}^{2}=2 \cdot 50000 \mathrm{~kg} \cdot \frac{[\mathrm{~g}]}{(268 \mathrm{~km} / \mathrm{h})^{2} \cdot 1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot 0.88}$

目
18) Maximum Attainable Lift Coefficient given Vehicle Stalling Speed

Open Calculator
ex $0.490612=2 \cdot 50000 \mathrm{~kg} \cdot \frac{[\mathrm{~g}]}{1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot 23 \mathrm{~m}^{2} \cdot(268 \mathrm{~km} / \mathrm{h})^{2}}$
19) Vehicle Stalling Speed given Maximum Attainable Lift Coefficient
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}=\sqrt{\frac{2 \cdot \mathrm{M}_{\text {Aircraft }} \cdot[\mathrm{g}]}{\rho \cdot \mathrm{S} \cdot \mathrm{C}_{\mathrm{L}, \max }}}$
Open Calculator
ex $200.1071 \mathrm{~km} / \mathrm{h}=\sqrt{\frac{2 \cdot 50000 \mathrm{~kg} \cdot[\mathrm{~g}]}{1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot 23 \mathrm{~m}^{2} \cdot 0.88}}$

Runway Takeoff Length ©®®

20) Aerodrome Reference Temperature given Corrected Take off Length
fx $\mathrm{ART}=\left(\frac{\text { TOR }_{\text {Corrected }}-\mathrm{T}_{\mathrm{c}}}{\mathrm{T}_{\mathrm{c}} \cdot 0.01}\right)+\mathrm{T}_{\mathrm{s}}$
ex $35.15857 \mathrm{~K}=\left(\frac{4038 \mathrm{~m}-3360 \mathrm{~m}}{3360 \mathrm{~m} \cdot 0.01}\right)+14.98 \mathrm{~K}$
21) Runway Elevation given Runway Take off Length Corrected for Elevation
fe $\mathrm{R}_{\mathrm{e}}=\left(\frac{\mathrm{T}_{\mathrm{c}}-\mathrm{TOR}}{\mathrm{TOR} \cdot 0.07}\right) \cdot 300$
ex $10.22844 \mathrm{~m}=\left(\frac{3360 \mathrm{~m}-3352 \mathrm{~m}}{3352 \mathrm{~m} \cdot 0.07}\right) \cdot 300$
22) Runway Slope about Take-off Length Corrected for Elevation, Temperature and Slope
$\mathrm{fx}_{\mathrm{x}} \mathrm{S}_{\text {Slope }}=\frac{\mathrm{TOR}_{\mathrm{C}}-\mathrm{TOR}_{\text {Corrected }}}{\mathrm{TOR}}$
ex $0.009906=\frac{4042 \mathrm{~m}-4038 \mathrm{~m}}{4038 \mathrm{~m} \cdot 0.1}$
23) Runway Take off Length Corrected for Elevation
$f \mathrm{x} \mathrm{T}_{\mathrm{c}}=\left(\mathrm{TOR} \cdot 0.07 \cdot\left(\frac{\mathrm{R}_{\mathrm{e}}}{300}\right)\right)+\mathrm{TOR}$
Open Calculator
ex $3361.386 \mathrm{~m}=\left(3352 \mathrm{~m} \cdot 0.07 \cdot\left(\frac{12 \mathrm{~m}}{300}\right)\right)+3352 \mathrm{~m}$
24) Runway Take off Length Corrected for Elevation, Temperature and Slope

$\mathrm{TOR}_{\mathrm{C}}=\left(\mathrm{TOR}_{\text {Corrected }} \cdot \mathrm{S}_{\text {Slope }} \cdot 0.1\right)+\mathrm{TOR}_{\text {Corrected }}$

ex $4042.038 \mathrm{~m}=(4038 \mathrm{~m} \cdot 0.01 \cdot 0.1)+4038 \mathrm{~m}$
25) Runway Takeoff Length Corrected for Elevation and Temperature
$\mathrm{TOR}_{\text {Corrected }}=\left(\mathrm{T}_{\mathrm{c}} \cdot\left(\mathrm{ART}-\mathrm{T}_{\mathrm{s}}\right) \cdot 0.01\right)+\mathrm{T}_{\mathrm{c}}$
ex $4038.048 \mathrm{~m}=(3360 \mathrm{~m} \cdot(35.16 \mathrm{~K}-14.98 \mathrm{~K}) \cdot 0.01)+3360 \mathrm{~m}$

Variables Used

- ART Aerodrome Reference Temperature (Kelvin)
- C Speed of Sound (Kilometer per Hour)
- Cl $_{\boldsymbol{I}}$ Lift Coefficient
- CL,max Maximum Lift Coefficient
- D Desired Takeoff Weight of Aircraft (Tonne)
- $F_{\text {Friction }}$ Force of Friction (Kilonewton)
- FW Fuel Weight to be carried (Tonne)
- LAircraft Lifting Force of Aircraft (Kilonewton)
- $\mathbf{M}_{\text {Aircraft }}$ Mass Aircraft (Kilogram)
- $M_{\text {True }}$ True Mach Number
- OEW Operating Empty Weight (Tonne)
- PYL Payload Carried (Tonne)
- $\mathbf{R}_{\mathbf{e}}$ Runway Elevation (Meter)
- S Aircraft Gross Wing Area (Square Meter)
- SSlope Runway Slope
- $\mathbf{T}_{\mathbf{a}}$ Monthly Mean of Average Daily Temperature (Kelvin)
- $\mathbf{T}_{\mathbf{c}}$ Runway Take off Length Corrected (Meter)
- $\mathbf{T}_{\mathbf{m}}$ Monthly Mean of Monthly Daily Temperature (Kelvin)
- $\mathbf{T}_{\mathbf{s}}$ Standard Temperature (Kelvin)
- TOR Takeoff Run (Meter)
- TOR $_{\text {C }}$ Corrected Runway Takeoff Length (Meter)
- TOR $_{\text {Corrected }}$ Corrected Takeoff Run (Meter)
- V Vehicle Speed (Kilometer per Hour)
- $\mathbf{V}_{\text {TAS }}$ True Aircraft Speed (Kilometer per Hour)
- μ_{r} Coefficient of Rolling Friction
- $\boldsymbol{\rho}$ Density Altitude for flying (Kilogram per Cubic Meter)
- Ф Angle between Runway and Horizontal Plane

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second ${ }^{2}$

Gravitational acceleration on Earth

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Weight in Tonne (t), Kilogram (kg)

Weight Unit Conversion

- Measurement: Temperature in Kelvin (K)

Temperature Unit Conversion \mathcal{L}

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Speed in Kilometer per Hour (km/h)

Speed Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion

Check other formula lists

- Aircraft Runway Length Estimation Formulas
- Airport Distribution Models Formulas
- Airport Forecast Methods Formulas
- Engine-Out Takeoff Case under Estimation of Runway Length Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

