

Gradually Varied Flow in Channels Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 36 Gradually Varied Flow in Channels Formulas

Gradually Varied Flow in Channels C

1) Area of Section given Energy Gradient

fx
$$\mathbf{S} = \left(\mathbf{Q}_{\mathrm{eg}}^2 \cdot rac{\mathbf{T}}{\left(1 - \left(rac{\mathrm{i}}{\mathrm{m}}
ight)
ight) \cdot \left([\mathrm{g}]
ight)}
ight)^{rac{1}{3}}$$

$$4.007819 \mathrm{m}^{2} = \left(\left(12.5 \mathrm{m}^{3}/\mathrm{s} \right)^{2} \cdot \frac{2\mathrm{m}}{\left(1 - \left(\frac{2.02}{4} \right) \right) \cdot \left([\mathrm{g}] \right)} \right)^{\frac{1}{3}}$$

2) Area of Section given Froude Number 🕑

fx
$$\mathbf{S} = \left(\left(\mathbf{Q}_{\mathrm{f}}^2 \cdot \frac{\mathrm{T}}{[\mathrm{g}] \cdot \mathrm{Fr}^2} \right) \right)^{rac{1}{3}}$$

ex $3.997777\mathrm{m}^2 = \left(\left((177\mathrm{m}^3/\mathrm{s})^2 \cdot \frac{2\mathrm{m}}{[\mathrm{g}] \cdot (10)^2} \right) \right)^{rac{1}{3}}$

3) Area of Section given Total Energy 🕑

fx
$$\mathbf{S} = \left(rac{\mathbf{Q}_{\mathrm{f}}^2}{2\cdot[\mathrm{g}]\cdot(\mathrm{E}_{\mathrm{t}}-\mathrm{d}_{\mathrm{f}})}
ight)^{0.5}$$

$$4.000068 \text{m}^{2} = \left(\frac{(177 \text{m}^{3}/\text{s})^{2}}{2 \cdot [\text{g}] \cdot (103.13 \text{J} - 3.3 \text{m})}\right)^{0.5}$$

Open Calculator 🕑

Open Calculator

4) Bed Slope given Energy Slope of Rectangular channel

$$\begin{aligned} \mathbf{f_X} \mathbf{S}_0 &= \mathbf{S}_{\mathrm{f}} + \left(\mathbf{m} \cdot \left(1 - \left(\mathbf{F}_{\mathrm{r(d)}}^2 \right) \right) \right) \end{aligned}$$

$$\begin{aligned} \mathbf{e_X} \mathbf{4.041} &= 2.001 + \left(4 \cdot \left(1 - \left((0.7)^2 \right) \right) \right) \end{aligned}$$

fx
$$\mathbf{S}_0 = \mathbf{i} + \mathbf{S}_{\mathbf{f}}$$
 Open Calculator \mathbf{C}

ex
$$4.021 = 2.02 + 2.001$$

7) Chezy Formula for Bed Slope given Energy Slope of Rectangular Channel 🖸

8) Chezy Formula for Depth of Flow given Energy Slope of Rectangular Channel 🕑

ex
$$3.779448$$
m = $\frac{3m}{\left(\frac{2.001}{4.001}\right)^{\frac{1}{3}}}$

9) Chezy Formula for Normal Depth given Energy Slope of Rectangular Channel 🖸

fx
$$\mathbf{C} = \left(\left(\frac{\mathbf{S}_{\mathrm{f}}}{\mathbf{S}_{\mathrm{0}}} \right)^{\frac{1}{3}} \right) \cdot \mathbf{d}_{\mathrm{f}}$$

ex
$$2.61943m = \left(\left(\frac{2.001}{4.001}\right)^{\frac{1}{3}}\right) \cdot 3.3m$$

10) Depth of Flow given Energy Slope of Rectangular channel 🕑

$$\begin{array}{l} \text{fx} \hline \mathbf{d}_{\mathrm{f}} = \frac{\mathrm{C}}{\left(\frac{\mathrm{S}_{\mathrm{f}}}{\mathrm{S}_{\mathrm{0}}}\right)^{\frac{3}{10}}} \\ \\ \text{ex} \hline 3.693156\mathrm{m} = \frac{3\mathrm{m}}{\left(\frac{2.001}{4.001}\right)^{\frac{3}{10}}} \end{array}$$

Open Calculator

11) Depth of Flow given Total Energy ()
(a)
$$d_f = E_t - \left(\frac{Q_f^2}{2 \cdot [g] \cdot S^2}\right)$$

(c) $3.793897m = 103.13J - \left(\frac{(177m^3/s)^2}{2 \cdot [g] \cdot (4.01m^2)^2}\right)$
(c) $3.793897m = 103.13J - \left(\frac{(177m^3/s)^2}{2 \cdot [g] \cdot (4.01m^2)^2}\right)$
(c) $Q_{eg} = \left(\left(\left(1 - \left(\frac{i}{m}\right)\right) \cdot \frac{[g] \cdot S^3}{T}\right)\right)^{0.5}$
(c) $Q_{eg} = \left(\left(\left(1 - \left(\frac{i}{m}\right)\right) \cdot \frac{[g] \cdot (4.01m^2)^3}{2m}\right)\right)^{0.5}$
(c) $12.51021m^3/s = \left(\left(\left(1 - \left(\frac{2.02}{4}\right)\right) \cdot \frac{[g] \cdot (4.01m^2)^3}{2m}\right)\right)^{0.5}$
(c) $Q_f = \frac{Fr}{\sqrt{\frac{F}{[g] \cdot S^3}}}$
(c) $Q_f = \frac{Fr}{\sqrt{\frac{T}{[g] \cdot S^3}}}$
(c) $177.8123m^3/s = \frac{10}{\sqrt{\frac{2m}{[g] \cdot (4.01m^2)^3}}}$
(c) $Q_f = ((E_t - d_f) \cdot 2 \cdot [g] \cdot S^2)^{0.5}$
(c) $Q_f = ((E_t - d_f) \cdot 2 \cdot [g] \cdot S^2)^{0.5}$
(c) $177.4395m^3/s = ((103.13J - 3.3m) \cdot 2 \cdot [g] \cdot (4.01m^2)^2)^{0.5}$

5/16

15) Energy Gradient given Bed Slope

fx
$$\mathrm{i}=\mathrm{S}_{\mathrm{0}}-\mathrm{S}_{\mathrm{f}}$$

$$ex 2 = 4.001 - 2.001$$

16) Energy Gradient given Slope

fx
$$\mathbf{i} = \left(1 - \left(\mathbf{Q}_{eg}^2 \cdot \frac{\mathbf{T}}{[g] \cdot \mathbf{S}^3}\right)\right) \cdot \mathbf{m}$$

ex
$$2.02323 = \left(1 - \left((12.5 \mathrm{m^3/s})^2 \cdot rac{2\mathrm{m}}{\mathrm{[g]} \cdot (4.01 \mathrm{m^2})^3}
ight)
ight) \cdot 4$$

17) Froude Number given Slope of Dynamic Equation of Gradually Varied Flow 🕑

fx
$$\mathbf{F}_{\mathrm{r(d)}} = \sqrt{1 - \left(rac{\mathbf{S}_0 - \mathbf{S}_{\mathrm{f}}}{\mathrm{m}}
ight)}$$

ex
$$0.707107 = \sqrt{1 - \left(\frac{4.001 - 2.001}{4}\right)}$$

18) Froude Number given Top Width

fx
$$\mathbf{Fr} = \sqrt{\mathbf{Q}_{\mathrm{f}}^2 \cdot \frac{\mathrm{T}}{[\mathrm{g}] \cdot \mathrm{S}^3}}$$

 $9.954315 = \sqrt{\left(177 \mathrm{m^3/s}
ight)^2 \cdot rac{2 \mathrm{m}}{\left[\mathrm{g}
ight] \cdot \left(4.01 \mathrm{m^2}
ight)^3}}$

Open Calculator

Open Calculator 🗗

Open Calculator

19) Normal Depth given Energy Slope of Rectangular channel 💪

$$\begin{aligned} & \textbf{C} = \left(\left(\frac{S_f}{S_0} \right)^{\frac{3}{10}} \right) \cdot d_f \end{aligned}$$

$$\begin{aligned} \textbf{Open Calculator } \textbf{C} \\ & \textbf{C} \end{aligned}$$

$$\begin{aligned} & \textbf{C} = \left(\left(\frac{2.001}{4.001} \right)^{\frac{3}{10}} \right) \cdot 3.3m \end{aligned}$$

20) Slope of Dynamic Equation of Gradually Varied Flow given Energy Gradient G

21) Slope of Dynamic Equation of Gradually Varied Flows 🕑

fx
$$m = rac{{{
m{S}}_0 - {
m{S}}_{
m{f}}}}{{1 - \left({{
m{F}}_{
m{r(d)}}^2}
ight)}}$$
 ex $3.921569 = rac{{4.001 - 2.001}}{{1 - \left({\left({0.7}
ight)}^2}
ight)}$

22) Top Width given Energy Gradient 💪

 $\mathbf{K} \mathbf{T} = \left(\left(1 - \left(\frac{\mathrm{i}}{\mathrm{m}} \right) \right) \cdot \frac{[\mathrm{g}] \cdot \mathrm{S}^3}{\mathrm{Q}_{\mathrm{eg}}^2} \right)$

$$2.003268 \mathrm{m} = \left(\left(1 - \left(\frac{2.02}{4} \right) \right) \cdot \frac{[\mathrm{g}] \cdot (4.01 \mathrm{m}^2)^3}{(12.5 \mathrm{m}^3/\mathrm{s})^2} \right)$$

Open Calculator 🕑

Open Calculator

8/16

27) Energy Slope of Channel given Energy Gradient 🕑

 $\frac{10}{3}$

fx
$$\mathrm{S_{f}=S_{0}-i}$$

ex 1.981 = 4.001 - 2.02

28) Energy Slope of Rectangular channel 🖸

fx
$$S_f = S_0 \cdot \left(\frac{C}{d_f}\right)^{\frac{10}{3}}$$
 ex $2.91201 = 4.001 \cdot \left(\frac{3m}{3.3m}\right)$

29) Bed Slope of Channel given Slope of Dynamic Equation of Gradually Varied Flow

$$f_{X} S_{0} = \frac{m}{\left(\frac{1 - \left(\left(\frac{y}{d_{f}}\right)^{\frac{10}{3}}\right)}{1 - \left(\left(\frac{h_{c}}{d_{f}}\right)^{3}\right)}\right)}$$
ex 4.190987 =
$$\frac{4}{\left(\frac{1 - \left(\left(\frac{1.5m}{3.3m}\right)^{\frac{10}{3}}\right)}{1 - \left(\left(\frac{1.001m}{3.3m}\right)^{3}\right)}\right)}$$

Open Calculator 🕑

Open Calculator

30) Bed Slope of Channel given Slope of Dynamic Equation of GVF through Chezy formula

Open Calculator 🕑

31) Chezy Formula for Critical Depth of Channel given Slope of Dynamic Equation of GVF

$$\mathbf{K} \mathbf{H}_{C} = \left(\left(1 - \left(\left(\frac{1}{d_{f}} \right)^{3} \right) \\ \frac{m}{S_{0}} \right) \right)^{\frac{1}{3}} \right) \cdot \mathbf{d}_{f} \right)$$

$$\mathbf{M}_{C} = \left(\left(1 - \left(\left(\frac{1 - \left(\left(\frac{1.5m}{3.3m} \right)^{3} \right) \\ \frac{4.001}{3.3m} \right)^{\frac{1}{3}} \right) \right)^{\frac{1}{3}} \right) \cdot 3.3m$$

$$\mathbf{M}_{C} = \left(\left(1 - \left(\left(\frac{1 - \left(\left(\frac{1.5m}{3.3m} \right)^{3} \\ \frac{4.001}{3.3m} \right) \right)^{\frac{1}{3}} \right) \right) \cdot 3.3m$$

32) Chezy Formula for Normal Depth of Channel given Slope of Dynamic Equation of GVF

$$fx \qquad \qquad \text{Open Calculator } C \\ y = \left(\left(\left(1 - \left(\left(\left(\frac{m}{S_0} \right) \cdot \left(\left(\left(1 - \left(\left(\left(\frac{h_c}{d_f} \right)^3 \right) \right) \right) \right) \right)^{\frac{1}{3}} \right) \cdot d_f \right) \right) \right) \right)$$

$$1.003896\mathrm{m} = \left(\left(1 - \left(\left(\frac{4}{4.001} \right) \cdot \left(\left(1 - \left(\left(\left(\frac{1.001\mathrm{m}}{3.3\mathrm{m}} \right)^3 \right) \right) \right) \right) \right) \right)^{\frac{1}{3}} \right) \cdot 3.3\mathrm{m}$$

33) Chezy Formula for Slope of Dynamic Equation of Gradually Varied Flow 🕑

$$f_{\mathbf{X}} \mathbf{m} = \mathbf{S}_0 \cdot \left(\frac{1 - \left(\left(\frac{\mathbf{y}}{\mathbf{d}_f} \right)^3 \right)}{1 - \left(\left(\left(\left(\frac{\mathbf{h}_c}{\mathbf{d}_f} \right)^3 \right) \right)} \right) \right)$$

ex
$$3.729335 = 4.001 \cdot \left(\frac{1 - \left(\left(\frac{1.5\mathbf{m}}{3.3\mathbf{m}} \right)^3 \right)}{1 - \left(\left(\left(\left(\frac{1.001\mathbf{m}}{3.3\mathbf{m}} \right)^3 \right) \right)} \right) \right)$$

ex

34) Critical Depth of Channel given Slope of Dynamic Equation of Gradually Varied Flow

$$\mathbf{fx} \mathbf{H}_{C} = \left(\left(1 - \left(\left(\frac{1}{g_{f}} \right)^{\frac{10}{3}} \right) \right)^{\frac{1}{3}} \right) \right) \cdot \mathbf{d}_{f} \right)$$

$$\mathbf{fx} \mathbf{H}_{C} = \left(\left(1 - \left(\left(\frac{1 - \left(\left(\frac{1.5m}{3.3m} \right)^{\frac{10}{3}} \right) \right)^{\frac{1}{3}} \right) \right) \cdot \mathbf{d}_{f} \right)$$

$$\mathbf{ex} 0.081154m = \left(\left(1 - \left(\left(\frac{1 - \left(\left(\frac{1.5m}{3.3m} \right)^{\frac{10}{3}} \right) \right)^{\frac{1}{3}} \right) \right) \cdot 3.3m \right)$$

35) Normal Depth of Channel given Slope of Dynamic Equation of Gradually Varied Flow

36) Slope of Dynamic Equations of Gradually Varied Flow 🕑

$$\mathbf{fx} \mathbf{m} = \mathbf{S}_0 \cdot \left(\frac{1 - \left(\left(\frac{\mathbf{y}}{\mathbf{d}_f} \right)^{\frac{10}{3}} \right)}{1 - \left(\left(\left(\frac{\mathbf{h}_c}{\mathbf{d}_f} \right)^3 \right)} \right) \right)$$
$$\mathbf{ex} 3.818671 = 4.001 \cdot \left(\frac{1 - \left(\left(\frac{1.5m}{3.3m} \right)^{\frac{10}{3}} \right)}{1 - \left(\left(\frac{1.001m}{3.3m} \right)^3 \right)} \right)$$

Variables Used

- C Critical Depth of Channel (Meter)
- d_f Depth of Flow (Meter)
- Et Total Energy in Open Channel (Joule)
- Fr(d) Froude No by Dynamic Equation
- Fr Froude Number
- h_c Critical Depth of Weir (Meter)
- H_C Critical Depth of Channel GVF Flow (Meter)
- i Hydraulic Gradient to Head Loss
- **m** Slope of Line
- Qeq Discharge by Energy Gradient (Cubic Meter per Second)
- Qf Discharge for GVF Flow (Cubic Meter per Second)
- S Wetted Surface Area (Square Meter)
- So Bed Slope of Channel
- S_f Energy Slope
- T Top Width (Meter)
- **y** Normal Depth (Meter)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second² Gravitational acceleration on Earth
- Function: **sqrt**, sqrt(Number) *Square root function*
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion

Check other formula lists

Gradually Varied Flow in Channels
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

2/1/2024 | 4:10:48 PM UTC

Please leave your feedback here ...

