

Flow Over Rectangular Sharp Crested Weir or Notch Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 41 Flow Over Rectangular Sharp Crested Weir or Notch Formulas

Flow Over Rectangular Sharp Crested Weir or Notch 🖉

1) Approach Velocity
(*)
$$\mathbf{v} = \frac{\mathbf{Q}^{2}}{\mathbf{b} \cdot \mathbf{d}_{f}}$$

(*) $15.4494 \text{m/s} = \frac{153 \text{m}^{2}/\text{s}}{3.001 \text{m} \cdot 3.3 \text{m}}$
2) Bazins Formula for Discharge if Velocity is considered
(*) $\mathbf{Q}_{Bv} = \text{m} \cdot \sqrt{2 \cdot \text{g}} \cdot \text{L}_{w} \cdot \text{H}_{Stillwater}^{\frac{3}{2}}$
(*) $91.65573 \text{m}^{3}/\text{s} = 0.407 \cdot \sqrt{2 \cdot 9.8 \text{m/s}^{2}} \cdot 3 \text{m} \cdot (6.6 \text{m})^{\frac{3}{2}}$
3) Bazins Formula for Discharge if Velocity is not considered
(*) $\mathbf{Q}_{Bv1} = \text{m} \cdot \sqrt{2 \cdot \text{g}} \cdot \text{L}_{w} \cdot \text{S}_{w}^{\frac{3}{2}}$
(*) $15.28934 \text{m}^{3}/\text{s} = 0.407 \cdot \sqrt{2 \cdot 9.8 \text{m/s}^{2}} \cdot 3 \text{m} \cdot (2 \text{m})^{\frac{3}{2}}$
4) Coefficient for Bazin Formula
(*) $\mathbf{m} = 0.405 + \left(\frac{0.003}{\text{S}_{w}}\right)$
(*) $0.4065 = 0.405 + \left(\frac{0.003}{2 \text{m}}\right)$

5) Coefficient for Bazin Formula if Velocity is considered 🕑

fx
$$\mathbf{m} = 0.405 + \left(rac{0.003}{\mathrm{H}_{\mathrm{Stillwater}}}
ight)$$
 ex $0.405455 = 0.405 + \left(rac{0.003}{6.6\mathrm{m}}
ight)$

6) Coefficient of Discharge given Discharge if Velocity considered 🕑

$$\label{eq:constraint} \begin{array}{l} \hline \textbf{K} & \textbf{Open Calculator f} \\ \hline \textbf{C}_{d} = \frac{\textbf{Q}_{Fr} \cdot 3}{2 \cdot \left(\sqrt{2 \cdot g}\right) \cdot \left(\textbf{L}_{w} - 0.1 \cdot \textbf{n} \cdot \textbf{H}_{Stillwater}\right) \cdot \left(\textbf{H}_{Stillwater}^{\frac{3}{2}} - \textbf{H}_{V}^{\frac{3}{2}}\right)} \\ \hline \textbf{8}\textbf{m}^{3}/\textbf{s} \cdot 3 \end{array}$$

ex
$$1.06198 = \frac{3607/8 \cdot 3}{2 \cdot \left(\sqrt{2 \cdot 9.8 \text{m/s}^2}\right) \cdot (3\text{m} - 0.1 \cdot 4 \cdot 6.6 \text{m}) \cdot \left((6.6 \text{m})^{\frac{3}{2}} - (4.6 \text{m})^{\frac{3}{2}}\right)}$$

7) Coefficient of Discharge given Discharge if Velocity not considered C

fx
$$\boxed{ \mathbf{C}_{\mathrm{d}} = rac{\mathbf{Q}_{\mathrm{Fr}} \cdot \mathbf{3}}{2 \cdot \left(\sqrt{2 \cdot \mathrm{g}}
ight) \cdot \left(\mathbf{L}_{\mathrm{w}} - 0.1 \cdot \mathrm{n} \cdot \mathbf{S}_{\mathrm{w}}
ight) \cdot \mathbf{S}_{\mathrm{w}}^{rac{3}{2}} } }
ight) }$$

ex
$$0.435598 = \frac{8m^3/s \cdot 3}{2 \cdot (\sqrt{2 \cdot 9.8m/s^2}) \cdot (3m - 0.1 \cdot 4 \cdot 2m) \cdot (2m)^{\frac{3}{2}}}$$

8) Coefficient of Discharge given Discharge over Weir without considering Velocity 🕑

Open Calculator 🗗

Open Calculator

fx
$$C_d = rac{Q_{Fr} \cdot 3}{2 \cdot \left(\sqrt{2 \cdot g}\right) \cdot L_w \cdot S_w^{rac{3}{2}}}$$
 ex $1.118034 = rac{28m^3/s \cdot 3}{1.118034}$

$$1.118034 = \frac{28 \text{m}^3/\text{s} \cdot 3}{2 \cdot \left(\sqrt{2 \cdot 9.8 \text{m}/\text{s}^2}\right) \cdot 3 \text{m} \cdot (2 \text{m})^{\frac{3}{2}}}$$

~

Open Calculator 🛃

9) Coefficient of Discharge given Discharge Passing over Weir considering Velocity 🗹

$$\label{eq:constraint} \begin{split} \text{fr} & \mathbf{C}_{d} = \frac{\mathbf{Q}_{\mathrm{Fr}} \cdot \mathbf{3}}{2 \cdot \left(\sqrt{2 \cdot \mathrm{g}}\right) \cdot \mathbf{L}_{\mathrm{w}} \cdot \left((\mathbf{S}_{\mathrm{w}} + \mathbf{H}_{\mathrm{V}})^{\frac{3}{2}} - \mathbf{H}_{\mathrm{V}}^{\frac{3}{2}}\right)} \\ \text{ex} \\ 0.446032 = \frac{28\mathrm{m}^{3}/\mathrm{s} \cdot \mathbf{3}}{2 \cdot \left(\sqrt{2 \cdot 9.8\mathrm{m}/\mathrm{s}^{2}}\right) \cdot 3\mathrm{m} \cdot \left((2\mathrm{m} + 4.6\mathrm{m})^{\frac{3}{2}} - (4.6\mathrm{m})^{\frac{3}{2}}\right)} \end{split}$$

10) Coefficient when Bazin Formula for Discharge if Velocity is considered 🗹

$$\begin{aligned} & \mathbf{fx} \mathbf{m} = \frac{\mathbf{Q}_{\mathrm{Bv}}}{\sqrt{2 \cdot \mathbf{g}} \cdot \mathbf{L}_{\mathrm{w}} \cdot \mathbf{H}_{\mathrm{Stillwater}}^{\frac{3}{2}}} \\ & \mathbf{ex} \ 0.406975 = \frac{91.65 \mathrm{m}^{3}/\mathrm{s}}{\sqrt{2 \cdot 9.8 \mathrm{m/s^{2}} \cdot 3 \mathrm{m} \cdot (6.6 \mathrm{m})^{\frac{3}{2}}} \end{aligned}$$

11) Coefficient when Bazin Formula for Discharge Velocity is not considered 🗹

$$f_{\mathbf{X}} \mathbf{m} = \frac{\mathbf{Q}_{\mathrm{Bv1}}}{\sqrt{2 \cdot \mathbf{g}} \cdot \mathbf{L}_{\mathrm{w}} \cdot \mathbf{S}_{\mathrm{w}}^{\frac{3}{2}}}$$

$$e_{\mathbf{X}} \mathbf{0.407284} = \frac{15.3 \mathrm{m}^{3}/\mathrm{s}}{\frac{3}{2}}$$

$$0.407284 = {\over \sqrt{2 \cdot 9.8 {
m m/s}^2} \cdot 3 {
m m} \cdot (2 {
m m})^{{3 \over 2}}}$$

12) Depth of Water Flow in Channel given Velocity Approach 🕑

 $3.001 \mathrm{m} \cdot 15.1 \mathrm{m/s}$

fx
$$d_f = \frac{Q'}{b \cdot v}$$

ex $3.376358m = \frac{153m^3/s}{c}$

Open Calculator

Open Calculator 🖸

13) Francis Formula for Discharge for Rectangular Notch if Velocity is considered
(2)
$$Q_{Fr} = 1.84 \cdot (L_w - 0.1 \cdot n \cdot H_{Stillwater}) \cdot \left(H_{Stillwater}^{\frac{3}{2}} - H_V^{\frac{3}{2}}\right)$$
 (Deen Calculator (2)
(3) $4.696288m^3/s = 1.84 \cdot (3m - 0.1 \cdot 4 \cdot 6.6m) \cdot ((6.6m)^{\frac{3}{2}} - (4.6m)^{\frac{3}{2}})$
(4) Francis Formula for Discharge for Rectangular Notch if Velocity not considered
(2) $Q_{Fr} = 1.84 \cdot (L_w - 0.1 \cdot n \cdot S_w) \cdot S_w^{\frac{3}{2}}$
(3) $11.44947m^3/s = 1.84 \cdot (3m - 0.1 \cdot 4 \cdot 2m) \cdot (2m)^{\frac{3}{2}}$
(3) $11.44947m^3/s = 1.84 \cdot (3m - 0.1 \cdot 4 \cdot 2m) \cdot (2m)^{\frac{3}{2}}$
(5) Rehbocks Formula for Coefficient of Discharge
(2) $C_d = 0.605 + 0.08 \cdot \left(\frac{S_w}{h_{Crest}}\right) + \left(\frac{0.001}{S_w}\right)$
(3) $0.618833 = 0.605 + 0.08 \cdot \left(\frac{2m}{12m}\right) + \left(\frac{0.001}{2m}\right)$
(4) Rehbocks Formula for Discharge over Rectangular Weir
(3) $0.618833 = 0.605 + 0.08 \cdot \left(\frac{2m}{12m}\right) + \left(\frac{0.001}{2m}\right)$
(4) Rehbocks Formula for Discharge over Rectangular Weir
(3) $0.618833 = 0.605 + 0.08 \cdot \left(\frac{2m}{12m}\right) + \left(\frac{0.001}{S_w}\right) + \sqrt{2 \cdot g} \cdot L_w \cdot S_w^{\frac{3}{2}}$
(4) $0.618804m^2/s = \frac{2}{3} \cdot \left(0.605 + 0.08 \cdot \left(\frac{2m}{12m}\right) + \left(\frac{0.001}{2m}\right)\right) \cdot \sqrt{2 \cdot 9.8m/s^2} \cdot 3m \cdot (2m)^{\frac{3}{2}}$
(5) $15.49804m^2/s = \frac{2}{3} \cdot \left(0.605 + 0.08 \cdot \left(\frac{2m}{12m}\right) + \left(\frac{0.001}{2m}\right)\right) \cdot \sqrt{2 \cdot 9.8m/s^2} \cdot 3m \cdot (2m)^{\frac{3}{2}}$
(4) 10 Width of Channel given Velocity Approach
(5) $b = \frac{Q^2}{v \cdot d_f}$
(5) $b = \frac{Q^2}{v \cdot d_f}$
(5) $a.070439m = \frac{153m^2/s}{15.1m/s \cdot 3.3m}$

()

Discharge 🕑

18) Discharge considering Approach Velocity
A Open Calculator

$$Q_{Fr} = \left(\frac{2}{3}\right) \cdot C_d \cdot \sqrt{2 \cdot g} \cdot (L_w - 0.1 \cdot n \cdot H_{Stillwater}) \cdot \left(H_{Stillwater}^{\frac{3}{2}} - H_V^{\frac{3}{2}}\right)$$

ex

4.971845m³/s = $\left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8m/s^2} \cdot (3m - 0.1 \cdot 4 \cdot 6.6m) \cdot \left((6.6m)^{\frac{3}{2}} - (4.6m)^{\frac{3}{2}}\right)$

19) Discharge for Notch which is to be Calibrated
(A Q_{Fr'} = k_{Flow} · Sⁿ_w)

29.44m³/s = 1.84 · (2m)⁴

20) Discharge given Velocity Approach
(A Q² = v · (b · d_f))

149.5398m³/s = 15.1m/s · (3.001m · 3.3m)

21) Discharge over Weir without considering Velocity
(A Q_{Fr'} = $\left(\frac{2}{3}\right) \cdot C_d \cdot \sqrt{2 \cdot g} \cdot L_w \cdot S_w^{\frac{3}{2}}$

(Open Calculator
(Open C

22) Discharge Passing over Weir considering Velocity 🕑

23) Discharge when End Contractions is suppressed and Velocity is considered 🕑

$$\begin{split} & \textbf{fx} \left[\mathbf{Q}_{\mathrm{Fr}^{\prime}} = 1.84 \cdot \mathbf{L}_{\mathrm{w}} \cdot \left(\mathbf{H}_{\mathrm{Stillwater}}^{\frac{3}{2}} - \mathbf{H}_{\mathrm{V}}^{\frac{3}{2}} \right) \right] \\ & \textbf{ex} \ 39.13573 \mathrm{m}^{3}/\mathrm{s} = 1.84 \cdot 3\mathrm{m} \cdot \left((6.6\mathrm{m})^{\frac{3}{2}} - (4.6\mathrm{m})^{\frac{3}{2}} \right) \end{split}$$

fx
$$\mathrm{Q}_{\mathrm{Fr}'} = 1.84 \cdot \mathrm{L}_{\mathrm{w}} \cdot \mathrm{S}_{\mathrm{w}}^{rac{3}{2}}$$

ex
$$15.61292 \mathrm{m^3/s} = 1.84 \cdot 3 \mathrm{m} \cdot (2 \mathrm{m})^{rac{3}{2}}$$

Hydraulic Head 🕑

25) Head given Coefficient for Bazin Formula
fx
$$S_{w} = \frac{0.003}{m - 0.405}$$
(Open Calculator C)
(Open

Open Calculator 🕑

۲۷

Open Calculator 🛃

27) Head given Discharge through Notch which is to be Calibrated 🕑

fx
$$\mathbf{S}_{w} = \left(rac{\mathbf{Q}_{\mathrm{Fr}'}}{\mathbf{k}_{\mathrm{Flow}}}
ight)^{rac{1}{n}}$$

ex
$$1.975082 \mathrm{m} = \left(rac{28 \mathrm{m}^3 \mathrm{/s}}{1.84}
ight)^{rac{1}{4}}$$

28) Head over Crest for given Discharge without Velocity

fx
$$\mathbf{S}_{\mathrm{w}} = \left(rac{\mathbf{Q}_{\mathrm{Fr}}\cdot\mathbf{3}}{2\cdot\mathbf{C}_{\mathrm{d}}\cdot\sqrt{2\cdot\mathbf{g}}\cdot\mathbf{L}_{\mathrm{w}}}
ight)^{rac{2}{3}}$$

ex
$$2.842087m = \left(\frac{28m^3/s \cdot 3}{2 \cdot 0.66 \cdot \sqrt{2 \cdot 9.8m/s^2} \cdot 3m}\right)^{\frac{2}{3}}$$

29) Head over Crest given Discharge Passing over Weir with Velocity 🗹

fx
$$\mathbf{S}_{\mathrm{w}} = \left(\left(rac{\mathrm{Q}_{\mathrm{Fr}'} \cdot 3}{2 \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{g}} \cdot \mathrm{L}_{\mathrm{w}}}
ight) + \mathrm{H}_{\mathrm{V}}^{rac{3}{2}}
ight)^{rac{2}{3}} - \mathrm{H}_{\mathrm{V}}$$

ex
$$1.389188m = \left(\left(\frac{28m^3/s \cdot 3}{2 \cdot 0.66 \cdot \sqrt{2 \cdot 9.8m/s^2} \cdot 3m} \right) + (4.6m)^{\frac{3}{2}} \right)^{\frac{2}{3}} - 4.6m$$

30) Head when Bazin Formula for Discharge if Velocity is considered 🕑

$$\begin{aligned} & \mathbf{fx} \ensuremath{\left[\mathbf{H}_{Stillwater} = \left(\frac{\mathbf{Q}_{Bv}}{\mathbf{m} \cdot \sqrt{2 \cdot \mathbf{g}} \cdot \mathbf{L}_{w}} \right)^{\frac{2}{3}} \end{aligned} \\ & \mathbf{ex} \ensuremath{\left[6.599725m = \left(\frac{91.65m^{3}/s}{0.407 \cdot \sqrt{2 \cdot 9.8m/s^{2}} \cdot 3m} \right)^{\frac{2}{3}} \end{aligned} \end{aligned}$$

Open Calculator

Open Calculator

Open Calculator 🛃

Open Calculator

31) Head when Bazin Formula for Discharge if Velocity is not considered 🖸

$$fr S_{w} = \left(\frac{Q_{Bv1}}{m \cdot \sqrt{2 \cdot g} \cdot L_{w}}\right)^{\frac{2}{3}}$$

$$ex 2.00093m = \left(\frac{15.3m^{3}/s}{0.407 \cdot \sqrt{2 \cdot 9.8m/s^{2}} \cdot 3m}\right)^{\frac{2}{3}}$$

$$fr H_{stillwater} = \left(\frac{Q_{Fr'}}{1.84 \cdot L_{w}}\right)^{\frac{2}{3}}$$

$$ex 2.952201m = \left(\frac{28m^{3}/s}{1.84 \cdot 3m}\right)^{\frac{2}{3}}$$

$$length of Crest [S]$$

Length of Crest

33) Length given Bazins Formula for Discharge if Velocity is not considered 🕑

Open Calculator 🗗

$$\mathbf{m} \cdot \sqrt{2 \cdot \mathbf{g}} \cdot \mathbf{S}_{\mathbf{w}}^{\frac{3}{2}}$$

$$\mathbf{ex} \quad 3.002092 \mathbf{m} = \frac{15.3 \mathbf{m}^3 / \mathbf{s}}{0.407 \cdot \sqrt{2 \cdot 9.8 \mathbf{m} / \mathbf{s}^2} \cdot (2\mathbf{m})^{\frac{3}{2}}}$$

 $\mathbf{Q}_{\mathrm{Bv1}}$

F.

34) Length of Crest considering Velocity fx Open Calculator $\mathrm{L_w} = \left(rac{3 \cdot \mathrm{Q_{Fr'}}}{2 \cdot \mathrm{C_d} \cdot \sqrt{2 \cdot \mathrm{g}} \cdot \left(\mathrm{H}_{\mathrm{Stillwater}}^{rac{3}{2}} - \mathrm{H}_{\mathrm{V}}^{rac{3}{2}} ight)} ight) + (0.1 \cdot \mathrm{n} \cdot \mathrm{H_{Stillwater}})$ ex $4.667416m = \left(\frac{3 \cdot 28m^3/s}{2 \cdot 0.66 \cdot \sqrt{2 \cdot 9.8m/s^2} \cdot \left((6.6m)^{\frac{3}{2}} - (4.6m)^{\frac{3}{2}}\right)}\right) + (0.1 \cdot 4 \cdot 6.6m)$ 35) Length of Crest given Discharge Passing over Weir 🕑 Open Calculator $\left| \mathbf{L}_{\mathrm{w}} = rac{\mathbf{Q}_{\mathrm{Fr}} \cdot \mathbf{3}}{2 \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{g}} \cdot \left((\mathrm{S}_{\mathrm{w}} + \mathrm{H}_{\mathrm{V}})^{rac{3}{2}} - \mathrm{H}_{\mathrm{V}}^{rac{3}{2}} ight)}$ $\underbrace{2.027416m}_{2.027416m} = \frac{28m^3/s \cdot 3}{2 \cdot 0.66 \cdot \sqrt{2 \cdot 9.8m/s^2} \cdot \left((2m + 4.6m)^{\frac{3}{2}} - (4.6m)^{\frac{3}{2}} \right)}$ 36) Length of Crest when Discharge and Velocity is considered C Open Calculator $egin{aligned} \hbar \ \mathbf{L}_{\mathrm{w}} &= rac{\mathbf{v}_{\mathrm{Fr}'}}{1.84 \cdot \left(\mathrm{H}_{\mathrm{Stillwator}}^{rac{3}{2}} - \mathrm{H}_{\mathrm{V}}^{rac{3}{2}} ight)} \end{aligned}$ ex 2.146376m = $\frac{28 \text{m}^3/\text{s}}{1.84 \cdot \left((6.6 \text{m})^{\frac{3}{2}} - (4.6 \text{m})^{\frac{3}{2}}\right)}$

37) Length of Crest when Discharge and Velocity is not considered G

10/14

38) Length of Crest when Francis Formula Discharge and Velocity is considered 💪

$$\mathbf{fx} \ \mathbf{L}_{w} = \left(\frac{\mathbf{Q}_{Fr}}{1.84 \cdot \left(\mathbf{H}_{Stillwater}^{\frac{3}{2}} - \mathbf{H}_{V}^{\frac{3}{2}}\right)}\right) + (0.1 \cdot \mathbf{n} \cdot \mathbf{H}_{Stillwater})$$

$$\mathbf{ex} \ 3.25325m = \left(\frac{8m^{3}/s}{1.84 \cdot \left((6.6m)^{\frac{3}{2}} - (4.6m)^{\frac{3}{2}}\right)}\right) + (0.1 \cdot 4 \cdot 6.6m)$$

39) Length of Crest when Francis Formula Discharge and Velocity is not considered G

$$\mathbf{fx} \left[\mathrm{L_w} = \left(rac{\mathrm{Q_{Fr}}}{1.84 \cdot \mathrm{S_w^{\frac{3}{2}}}}
ight) + (0.1 \cdot \mathrm{n} \cdot \mathrm{S_w})
ight]$$

ex
$$2.337189 \mathrm{m} = \left(\frac{8 \mathrm{m}^3 \mathrm{/s}}{1.84 \cdot (2 \mathrm{m})^{\frac{3}{2}}}\right) + (0.1 \cdot 4 \cdot 2 \mathrm{m})$$

40) Length of Crest without considering Velocity

$$\label{eq:Lw} \textbf{fx} \left[L_w = \left(\frac{Q_{Fr} \cdot 2}{3 \cdot C_d \cdot \sqrt{2 \cdot g}} \right)^{\frac{2}{3}} + (0.1 \cdot n \cdot S_w) \right]$$

ex
$$2.293543m = \left(\frac{8m^3/s \cdot 2}{3 \cdot 0.66 \cdot \sqrt{2 \cdot 9.8m/s^2}}\right)^{\frac{2}{3}} + (0.1 \cdot 4 \cdot 2m)$$

41) Length when Bazins formula for Discharge if Velocity is considered 🕑

 $\begin{aligned} & \mathbf{fx} \mathbf{L}_{w} = \frac{\mathbf{Q}_{Bv}}{\mathbf{m} \cdot \sqrt{2 \cdot \mathbf{g}} \cdot \mathbf{H}_{Stillwater}^{\frac{3}{2}}} \\ & \mathbf{ex} \mathbf{2.999813m} = \frac{91.65 \mathrm{m}^{3} / \mathrm{s}}{0.407 \cdot \sqrt{2 \cdot 9.8 \mathrm{m} / \mathrm{s}^{2}} \cdot (6.6 \mathrm{m})^{\frac{3}{2}}} \end{aligned}$

Open Calculator

Open Calculator 🕑

Open Calculator

Open Calculator

Variables Used

- **b** Width of Channel1 (Meter)
- C_d Coefficient of Discharge
- **d**_f Depth of Flow (Meter)
- g Acceleration due to Gravity (Meter per Square Second)
- h_{Crest} Height of Crest (Meter)
- Hstillwater Still Water Head (Meter)
- H_V Velocity Head (Meter)
- **k**Flow Constant of Flow
- L_w Length of Weir Crest (Meter)
- m Bazins Coefficient
- **n** Number of End Contraction
- Q' Discharge by Approach Velocity (Cubic Meter per Second)
- QBV Bazins Discharge with Velocity (Cubic Meter per Second)
- QBv1 Bazins Discharge without Velocity (Cubic Meter per Second)
- **Q_{Fr}** Francis Discharge (Cubic Meter per Second)
- Q_{Fr'} Francis Discharge with Suppressed End (Cubic Meter per Second)
- Sw Height of Water above Crest of Weir (Meter)
- V Velocity of Flow 1 (Meter per Second)

Constants, Functions, Measurements used

- Function: **sqrt**, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion

Check other formula lists

- Broad Crested Weir Formulas G
- Flow Over a Trapizoidal and Triangular
 Weir or Notch Formulas
- Flow Over Rectangular Sharp Crested Weir or Notch Formulas
- Submerged Weirs Formulas C
- Time Required to Empty a Reservoir with Rectangular Weir Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/19/2024 | 10:10:48 AM UTC

Please leave your feedback here...

