
calculatoratoz.com

Stress and Strain Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 61 Stress and Strain Formulas

Stress and Strain

Bar of Uniform Strength

1) Area at Section 1 of Bars of Uniform Strength
$f \times \mathrm{A}_{1}=\mathrm{A}_{2} \cdot e^{\gamma \cdot \frac{\mathrm{L}_{\mathrm{Rod}}}{\sigma \text { Uniform }}}$
Open Calculator
ex $0.001256 \mathrm{~m}^{2}=0.001250 \mathrm{~m}^{2} \cdot e^{70 \mathrm{kN} / \mathrm{m}^{3} \cdot \frac{1.83 \mathrm{~m}}{27 \mathrm{MPa}}}$
2) Area at Section 2 of Bars of Uniform Strength
$\mathrm{fx}_{\mathrm{x}} \mathrm{A}_{2}=\frac{\mathrm{A}_{1}}{e^{\gamma \cdot \frac{\mathrm{L}_{\mathrm{Rod}}}{{ }^{\sigma_{\text {Uniform }}}}}}$
Open Calculator 〔
ex $0.00125 \mathrm{~m}^{2}=\frac{0.001256 \mathrm{~m}^{2}}{e^{70 \mathrm{kN} / \mathrm{m}^{3} \cdot \frac{1.83 \mathrm{~m}}{27 \mathrm{MP} \mathrm{P}^{2}}}}$
3) Weight Density of Bar using Area at Section 1 of Bars of uniform Strength
$\mathrm{fx} \gamma=\left(2.303 \cdot \log 10\left(\frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}\right)\right) \cdot \frac{\sigma_{\text {Uniform }}}{\mathrm{L}_{\text {Rod }}}$
Open Calculator
ex $70.66298 \mathrm{kN} / \mathrm{m}^{3}=\left(2.303 \cdot \log 10\left(\frac{0.001256 \mathrm{~m}^{2}}{0.001250 \mathrm{~m}^{2}}\right)\right) \cdot \frac{27 \mathrm{MPa}}{1.83 \mathrm{~m}}$

Circular Tapering Rod

4) Diameter at One End of Circular Tapering Rod

$$
\begin{aligned}
& \mathrm{fx} \mathrm{~d}_{2}=4 \cdot \mathrm{~W}_{\text {Applied load }} \cdot \frac{\mathrm{L}}{\pi \cdot \mathrm{E} \cdot \delta \mathrm{l} \cdot \mathrm{~d}_{1}} \\
& \text { ex } 0.031831 \mathrm{~m}=4 \cdot 150 \mathrm{kN} \cdot \frac{3 \mathrm{~m}}{\pi \cdot 20000 \mathrm{MPa} \cdot 0.020 \mathrm{~m} \cdot 0.045 \mathrm{~m}}
\end{aligned}
$$

5) Diameter at Other End of Circular Tapering Rod
$\mathrm{fx} \mathrm{d}_{1}=4 \cdot \mathrm{~W}_{\text {Applied load }} \cdot \frac{\mathrm{L}}{\pi \cdot \mathrm{E} \cdot \delta \mathrm{l} \cdot \mathrm{d}_{2}}$
Open Calculator
ex $0.040926 \mathrm{~m}=4 \cdot 150 \mathrm{kN} \cdot \frac{3 \mathrm{~m}}{\pi \cdot 20000 \mathrm{MPa} \cdot 0.020 \mathrm{~m} \cdot 0.035 \mathrm{~m}}$
6) Diameter of Circular Tapered Rod with Uniform Cross Section
$f x d=\sqrt{4 \cdot \mathrm{~W}_{\text {Applied load }} \cdot \frac{\mathrm{L}}{\pi \cdot \mathrm{E} \cdot \delta \mathrm{l}}}$
ex $0.037847 \mathrm{~m}=\sqrt{4 \cdot 150 \mathrm{kN} \cdot \frac{3 \mathrm{~m}}{\pi \cdot 20000 \mathrm{MPa} \cdot 0.020 \mathrm{~m}}}$
7) Elongation of Circular Tapering Rod

$$
\mathrm{fx} \delta \mathrm{l}=4 \cdot \mathrm{~W}_{\text {Applied load }} \cdot \frac{\mathrm{L}}{\pi \cdot \mathrm{E} \cdot \mathrm{~d}_{1} \cdot \mathrm{~d}_{2}}
$$

8) Elongation of Prismatic Rod
$f \mathrm{x} \delta \mathrm{l}=4 \cdot \mathrm{~W}_{\text {Applied load }} \cdot \frac{\mathrm{L}}{\pi \cdot \mathrm{E} \cdot\left(\mathrm{d}^{2}\right)}$

9) Length of Circular Tapered Rod with Uniform Cross Section
$f \mathrm{x}=\frac{\delta \mathrm{l}}{4 \cdot \frac{\mathrm{~W}_{\text {Applied load }}}{\pi \cdot \mathrm{E} \cdot\left(\mathrm{d}^{2}\right)}}$
Open Calculator
$\boldsymbol{\operatorname { e x }} 30.15929 \mathrm{~m}=\frac{0.020 \mathrm{~m}}{4 \cdot \frac{150 \mathrm{kN}}{\pi \cdot 20000 \mathrm{MPa} \cdot\left((0.12 \mathrm{~m})^{2}\right)}}$
10) Length of Circular Tapering rod

Open Calculator
$\mathrm{ex} 3.298672 \mathrm{~m}=\frac{0.020 \mathrm{~m}}{4 \cdot \frac{150 \mathrm{kN}}{\pi \cdot 20000 \mathrm{MPa} \cdot 0.045 \mathrm{~m} \cdot 0.035 \mathrm{~m}}}$
11) Load at End with known Extension of Circular Tapering Rod

$$
\begin{aligned}
& f \times \mathrm{W}_{\text {Applied load }}=\frac{\delta \mathrm{l}}{4 \cdot \frac{\mathrm{~L}}{\pi \cdot \mathrm{E} \cdot \mathrm{~d}_{1} \cdot \mathrm{~d}_{2}}} \\
& \mathrm{ex} 164.9336 \mathrm{kN}=\frac{0.020 \mathrm{~m}}{4 \cdot \frac{3 \mathrm{~m}}{\pi \cdot 20000 \mathrm{MPa} \cdot 0.045 \mathrm{~m} \cdot 0.035 \mathrm{~m}}}
\end{aligned}
$$

Open Calculator
12) Modulus of Elasticity of Circular Tapering Rod with Uniform Cross Section Section 〔
$\mathrm{fx} \mathrm{E}=4 \cdot \mathrm{~W}_{\text {Applied load }} \cdot \frac{\mathrm{L}}{\pi \cdot \delta \mathrm{l} \cdot\left(\mathrm{d}^{2}\right)}$
Open Calculator
ex $1989.437 \mathrm{MPa}=4 \cdot 150 \mathrm{kN}$. 3 m

$$
\overline{\pi \cdot 0.020 \mathrm{~m} \cdot\left((0.12 \mathrm{~m})^{2}\right)}
$$

13) Modulus of Elasticity using Elongation of Circular Tapering Rod

$$
\mathrm{fx} \mathrm{E}=4 \cdot \mathrm{~W}_{\text {Applied load }} \cdot \frac{\mathrm{L}}{\pi \cdot \delta l \cdot \mathrm{~d}_{1} \cdot \mathrm{~d}_{2}}
$$

Open Calculator
ex $18189.14 \mathrm{MPa}=4 \cdot 150 \mathrm{kN} \cdot \frac{3 \mathrm{~m}}{\pi \cdot 0.020 \mathrm{~m} \cdot 0.045 \mathrm{~m} \cdot 0.035 \mathrm{~m}}$

Elongation due to Self weight

14) Cross Sectional Area with known Elongation of Tapering Bar due to Self Weight
$f x A=W_{\text {Load }} \cdot \frac{L}{6 \cdot \delta l \cdot E}$
ex $2187.5 \mathrm{~mm}^{2}=1750 \mathrm{kN} \cdot \frac{3 \mathrm{~m}}{6 \cdot 0.020 \mathrm{~m} \cdot 20000 \mathrm{MPa}}$
15) Elongation due to Self Weight in Prismatic Bar
$\mathrm{fx} \delta \mathrm{l}=\gamma_{\mathrm{Rod}} \cdot \mathrm{L} \cdot \frac{\mathrm{L}}{\mathrm{E} \cdot 2}$
ex $0.001109 \mathrm{~m}=4930.96 \mathrm{kN} / \mathrm{m}^{3} \cdot 3 \mathrm{~m} \cdot \frac{3 \mathrm{~m}}{20000 \mathrm{MPa} \cdot 2}$
16) Elongation due to Self Weight in Prismatic Bar using Applied Load
$f \mathbf{f x}=\mathrm{W}_{\mathrm{Load}} \cdot \frac{\mathrm{L}}{2 \cdot \mathrm{~A} \cdot \mathrm{E}}$

Open Calculator

ex $0.023438 \mathrm{~m}=1750 \mathrm{kN} \cdot \frac{3 \mathrm{~m}}{2 \cdot 5600 \mathrm{~mm}^{2} \cdot 20000 \mathrm{MPa}}$
17) Elongation of Truncated Conical Rod due to Self Weight
$f \mathbf{f x} \delta \mathrm{l}=\frac{\left(\gamma_{\text {Rod }} \cdot \mathrm{l}^{2}\right) \cdot\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right)}{6 \cdot \mathrm{E} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)}$
Open Calculator
ex $0.02 \mathrm{~m}=\frac{\left(4930.96 \mathrm{kN} / \mathrm{m}^{3} \cdot(7.8 \mathrm{~m})^{2}\right) \cdot(0.045 \mathrm{~m}+0.035 \mathrm{~m})}{6 \cdot 20000 \mathrm{MPa} \cdot(0.045 \mathrm{~m}-0.035 \mathrm{~m})}$
18) Length of Bar using Elongation due to Self Weight in Prismatic bar

ex $12.73736 \mathrm{~m}=\sqrt{\frac{0.020 \mathrm{~m}}{\frac{4930.96 \mathrm{kN} / \mathrm{m}^{3}}{20000 \mathrm{MPa} \cdot 2}}}$
19) Length of Bar using its Uniform Strength
$\mathrm{fx} L=\left(2.303 \cdot \log 10\left(\frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}\right)\right) \cdot\left(\frac{\sigma_{\text {Uniform }}}{\gamma_{\text {Rod }}}\right)$
ex $0.026225 \mathrm{~m}=\left(2.303 \cdot \log 10\left(\frac{0.001256 \mathrm{~m}^{2}}{0.001250 \mathrm{~m}^{2}}\right)\right) \cdot\left(\frac{27 \mathrm{MPa}}{4930.96 \mathrm{kN} / \mathrm{m}^{3}}\right)$
20) Length of Rod of Truncated Conical Section
$\mathbf{f x} l=\sqrt{\frac{\delta l}{\frac{\left(\gamma_{\text {Rod }}\right) \cdot\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right)}{6 \cdot \mathrm{E} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)}}}$

Open Calculator

$e x 7.800005 \mathrm{~m}=\sqrt{\frac{0.020 \mathrm{~m}}{\frac{\left(4930.96 \mathrm{kN} / \mathrm{m}^{3}\right) \cdot(0.045 \mathrm{~m}+0.035 \mathrm{~m})}{6 \cdot 20000 \mathrm{MPa} \cdot(0.045 \mathrm{~m}-0.035 \mathrm{~m})}}}$
21) Modulus of Elasticity of Bar with known elongation of Truncated Conical Rod due to Self Weight
$\mathrm{fx} \mathrm{E}=\frac{\left(\gamma_{\text {Rod }} \cdot \mathrm{l}^{2}\right) \cdot\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right)}{6 \cdot \delta \mathrm{l} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)}$
Open Calculator
ex $19999.97 \mathrm{MPa}=\frac{\left(4930.96 \mathrm{kN} / \mathrm{m}^{3} \cdot(7.8 \mathrm{~m})^{2}\right) \cdot(0.045 \mathrm{~m}+0.035 \mathrm{~m})}{6 \cdot 0.020 \mathrm{~m} \cdot(0.045 \mathrm{~m}-0.035 \mathrm{~m})}$
22) Modulus of Elasticity of Rod using Extension of Truncated Conical Rod due to Self Weight
$f_{x} \mathrm{E}=\frac{\left(\gamma_{\text {Rod }} \cdot \mathrm{l}^{2}\right) \cdot\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right)}{6 \cdot \delta \mathrm{l} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)}$

23) Specific weight of Truncated Conical Rod using its elongation due to Self Weight
$\mathbf{f x} \gamma_{\operatorname{Rod}}=\frac{\delta l}{\frac{\left(\mathrm{l}^{2}\right) \cdot\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right)}{6 \cdot \mathrm{E} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)}}$

$$
\text { ex } 4930.966 \mathrm{kN} / \mathrm{m}^{3}=\frac{0.020 \mathrm{~m}}{\frac{\left((7.8 \mathrm{~m})^{2}\right) \cdot(0.045 \mathrm{~m}+0.035 \mathrm{~m})}{6 \cdot 20000 \mathrm{MPa} \cdot(0.045 \mathrm{~m}-0.035 \mathrm{~m})}}
$$

24) Uniform Stress on Bar due to Self-Weight

Elongation of Tapering Bar due to Self Weight

25) Elongation of Conical bar due to Self Weight
$\mathrm{fx} \delta \mathrm{l}=\frac{\gamma \cdot \mathrm{L}_{\text {Taperedbar }}^{2}}{6 \cdot \mathrm{E}}$
Open Calculator
ex $0.019965 \mathrm{~m}=\frac{70 \mathrm{kN} / \mathrm{m}^{3} \cdot(185 \mathrm{~m})^{2}}{6 \cdot 20000 \mathrm{MPa}}$
26) Elongation of Conical Bar due to Self Weight with known Crosssectional area
$\mathrm{fx} \delta \mathrm{l}=\mathrm{W}_{\mathrm{Load}} \cdot \frac{\mathrm{l}}{6 \cdot \mathrm{~A} \cdot \mathrm{E}}$
Open Calculator
ex $0.020312 \mathrm{~m}=1750 \mathrm{kN} \cdot \frac{7.8 \mathrm{~m}}{6 \cdot 5600 \mathrm{~mm}^{2} \cdot 20000 \mathrm{MPa}}$
27) Length of Bar given Elongation of Conical Bar due to Self Weight
$\mathbf{f x} \mathrm{L}_{\text {Taperedbar }}=\sqrt{\frac{\delta l}{\frac{\gamma}{6 \cdot E}}}$
ex $185.164 \mathrm{~m}=\sqrt{\frac{0.020 \mathrm{~m}}{\frac{70 \mathrm{kN} / \mathrm{m}^{3}}{6 \cdot 20000 \mathrm{MPa}}}}$
28) Length of Bar using Elongation of Conical Bar with Cross-sectional area

$f_{\mathrm{x}} \mathrm{l}=\frac{\delta \mathrm{l}}{\frac{\mathrm{W}_{\mathrm{Load}}}{6 \cdot \mathrm{~A} \cdot \mathrm{E}}}$

ex $7.68 \mathrm{~m}=\frac{0.020 \mathrm{~m}}{\frac{1750 \mathrm{kN}}{6 \cdot 5600 \mathrm{~mm}^{2} \cdot 20000 \mathrm{MPa}}}$
29) Length of Circular Tapering Rod when deflection due to load
$f \mathbf{x}=\frac{\delta l}{4 \cdot \frac{\mathrm{~W}_{\text {Load }}}{\pi \cdot \mathrm{E} \cdot\left(\mathrm{d}_{1} \cdot \mathrm{~d}_{2}\right)}}$
Open Calculator
ex $0.282743 \mathrm{~m} \quad 0.020 \mathrm{~m}$
$\frac{1750 \mathrm{kN}}{4 \cdot \frac{1}{\pi \cdot 20000 \mathrm{MPa} \cdot(0.045 \mathrm{~m} \cdot 0.035 \mathrm{~m})}}$
30) Length of Prismatic Rod given Elongation due to Self Weight in Uniform Bar
$\mathrm{fx}_{\mathrm{x}} \mathrm{L}=\frac{\delta l}{\frac{\mathrm{~W}_{\mathrm{Load}}}{2 \cdot \mathrm{~A} \cdot \mathrm{E}}}$
ex
$2.56 \mathrm{~m}=\frac{0.020 \mathrm{~m}}{\frac{1750 \mathrm{kN}}{2 \cdot 5600 \mathrm{~mm}^{2} \cdot 20000 \mathrm{MPa}}}$
31) Load on Conical Bar with known Elongation due to Self Weight \mathcal{L}

ex
 $1723.077 \mathrm{kN}=\frac{0.020 \mathrm{~m}}{\frac{7.8 \mathrm{~m}}{6 \cdot 5600 \mathrm{~mm}^{2} \cdot 20000 \mathrm{MPa}}}$

32) Load on Prismatic Bar with known Elongation due to Self Weight

$$
f \mathrm{x} \mathrm{~W}_{\text {Load }}=\frac{\delta l}{\frac{\mathrm{~L}}{2 \cdot \mathrm{~A} \cdot \mathrm{E}}}
$$

ex $1493.333 \mathrm{kN}=\frac{0.020 \mathrm{~m}}{\frac{3 \mathrm{~m}}{2 \cdot 5600 \mathrm{~mm}^{2} \cdot 20000 \mathrm{MPa}}}$
33) Modulus of Elasticity of Bar given Elongation of Conical Bar due to Self Weight
$f \mathbf{x}=\gamma \cdot \frac{L_{\text {Taperedbar }}^{2}}{6 \cdot \delta l}$
ex $19964.58 \mathrm{MPa}=70 \mathrm{kN} / \mathrm{m}^{3} \cdot \frac{(185 \mathrm{~m})^{2}}{6 \cdot 0.020 \mathrm{~m}}$
34) Modulus of Elasticity of Conical Bar with known Elongation and Crosssectional area
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{E}}=\mathrm{W}_{\text {Load }} \cdot \frac{\mathrm{l}}{6 \cdot \mathrm{~A} \cdot \delta \mathrm{l}}$
ex $20312.5 \mathrm{MPa}=1750 \mathrm{kN} \cdot \frac{7.8 \mathrm{~m}}{6 \cdot 5600 \mathrm{~mm}^{2} \cdot 0.020 \mathrm{~m}}$
35) Modulus of Elasticity of Prismatic Bar with known Elongation due to Self Weight
$f \mathrm{fx}=\gamma \cdot \mathrm{L} \cdot \frac{\mathrm{L}}{\delta \mathrm{l} \cdot 2}$
Open Calculator

$$
\text { ex } 15.75 \mathrm{MPa}=70 \mathrm{kN} / \mathrm{m}^{3} \cdot 3 \mathrm{~m} \cdot \frac{3 \mathrm{~m}}{0.020 \mathrm{~m} \cdot 2}
$$

36) Self Weight of Conical section with known Elongation

Open Calculator
ex $70.12418 \mathrm{kN} / \mathrm{m}^{3}=\frac{0.020 \mathrm{~m}}{\frac{(185 \mathrm{~m})^{2}}{6 \cdot 20000 \mathrm{MPa}}}$
37) Self Weight of Prismatic Bar with known Elongation

ex $88888.89 \mathrm{kN} / \mathrm{m}^{3}=\frac{0.020 \mathrm{~m}}{3 \mathrm{~m} \cdot \frac{3 \mathrm{~m}}{20000 \mathrm{MPa} \cdot 2}}$

Hoop Stress due to Temperature Fall ©

38) Diameter of Tyre given Hoop Stress due to Temperature Fall
$f x d_{\text {tyre }}=\frac{D_{\text {wheel }}}{\left(\frac{\sigma_{h}}{E}\right)+1}$
Open Calculator
ex $0.230286 \mathrm{~m}=\frac{0.403 \mathrm{~m}}{\left(\frac{15000 \mathrm{MPa}}{20000 \mathrm{MPa}}\right)+1}$
39) Diameter of Wheel given Hoop Stress due to Temperature Fall
$f \times D_{\text {wheel }}=\left(1+\left(\frac{\sigma_{h}}{E}\right)\right) \cdot d_{\text {tyre }}$
ex $0.4025 \mathrm{~m}=\left(1+\left(\frac{15000 \mathrm{MPa}}{20000 \mathrm{MPa}}\right)\right) \cdot 0.230 \mathrm{~m}$
40) Hoop Stress due to Temperature Fall
$f \mathrm{x} \sigma_{\mathrm{h}}=\left(\frac{\mathrm{D}_{\text {wheel }}-\mathrm{d}_{\text {tyre }}}{\mathrm{d}_{\text {tyre }}}\right) \cdot \mathrm{E}$
ex $15043.48 \mathrm{MPa}=\left(\frac{0.403 \mathrm{~m}-0.230 \mathrm{~m}}{0.230 \mathrm{~m}}\right) \cdot 20000 \mathrm{MPa}$
41) Hoop Stress due to Temperature Fall given Strain
$f \mathrm{f} \sigma_{\mathrm{h}}=\varepsilon \cdot \mathrm{E}$
Open Calculator
ex $15000 \mathrm{MPa}=0.75 \cdot 20000 \mathrm{MPa}$
42) Modulus of Elasticity given Hoop Stress due to Temperature Fall with Strain

ex $20000 \mathrm{MPa}=\frac{15000 \mathrm{MPa}}{0.75}$
43) Strain for Hoop Stress due to Temperature Fall
$f \mathbf{x} \varepsilon=\frac{\sigma_{\mathrm{h}}}{\mathrm{E}}$
ex $0.75=\frac{15000 \mathrm{MPa}}{20000 \mathrm{MPa}}$

Temperature Stresses and Strains

44) Change in Temperature using Temperature Stress for Tapering Rod

Open Calculator

$$
\text { ex } 13.5155^{\circ} \mathrm{C}=\frac{20 \mathrm{MPa}}{0.006 \mathrm{~m} \cdot 20000 \mathrm{MPa} \cdot 0.001^{\circ} \mathrm{C}^{-1} \cdot \frac{15 \mathrm{~m}-10 \mathrm{~m}}{\ln \left(\frac{155}{10 \mathrm{~m}}\right)}}
$$

45) Coefficient of Thermal Expansion given Temperature Stress for Tapering Rod Section

$$
\operatorname{ex} 0.001^{\circ} \mathrm{C}^{-1}=\frac{18497 \mathrm{kN}}{0.006 \mathrm{~m} \cdot 20000 \mathrm{MPa} \cdot 12.5^{\circ} \mathrm{C} \cdot \frac{15 \mathrm{~m}-10 \mathrm{~m}}{\ln \left(\frac{155}{10 \mathrm{~m}}\right)}}
$$

46) Diameter of Tyre given Temperature Strain
$f \mathrm{fx} \mathrm{d}_{\text {tyre }}=\left(\frac{\mathrm{D}_{\text {wheel }}}{\varepsilon+1}\right)$
ex $0.230286 \mathrm{~m}=\left(\frac{0.403 \mathrm{~m}}{0.75+1}\right)$
47) Diameter of Wheel given Temperature Strain 〔
$f \mathrm{fx} \mathrm{D}_{\text {wheel }}=\mathrm{d}_{\text {tyre }} \cdot(\varepsilon+1)$
Open Calculator
ex $0.4025 \mathrm{~m}=0.230 \mathrm{~m} \cdot(0.75+1)$
48) Modulus of Elasticity given Temperature Stress for Tapering Rod Section [

Open Calculator

$$
\text { ex } 21624.81 \mathrm{MPa}=\frac{20 \mathrm{MPa}}{0.006 \mathrm{~m} \cdot 0.001^{\circ} \mathrm{C}^{-1} \cdot 12.5^{\circ} \mathrm{C} \cdot \frac{15 \mathrm{~m}-10 \mathrm{~m}}{\ln \left(\frac{15 \mathrm{~m}}{10 \mathrm{~m}}\right)}}
$$

49) Modulus of Elasticity using Hoop Stress due to Temperature Fall
$f \mathbf{x} E=\frac{\sigma_{\mathrm{h}} \cdot \mathrm{d}_{\mathrm{tyre}}}{\mathrm{D}_{\text {wheel }}-\mathrm{d}_{\mathrm{tyre}}}$
Open Calculator
ex $19942.2 \mathrm{MPa}=\frac{15000 \mathrm{MPa} \cdot 0.230 \mathrm{~m}}{0.403 \mathrm{~m}-0.230 \mathrm{~m}}$
50) Temperature Strain
$\mathrm{fx} \varepsilon=\left(\frac{\mathrm{D}_{\text {wheel }}-\mathrm{d}_{\text {tyre }}}{\mathrm{d}_{\text {tyre }}}\right)$
ex $0.752174=\left(\frac{0.403 \mathrm{~m}-0.230 \mathrm{~m}}{0.230 \mathrm{~m}}\right)$
51) Temperature Stress for Tapering Rod Section
$\mathrm{fx} \mathrm{W}=\mathrm{t} \cdot \mathrm{E} \cdot \alpha \cdot \Delta \mathrm{t} \cdot \frac{\mathrm{D}_{2}-\mathrm{h} 1}{\ln \left(\frac{\mathrm{D}_{2}}{\mathrm{~h} 1_{1}}\right)}$

Open Calculator

ex

$18497.28 \mathrm{kN}=0.006 \mathrm{~m} \cdot 20000 \mathrm{MPa} \cdot 0.001^{\circ} \mathrm{C}^{-1} \cdot 12.5^{\circ} \mathrm{C} \cdot \frac{15 \mathrm{~m}-10 \mathrm{~m}}{\ln \left(\frac{15 \mathrm{~m}}{10 \mathrm{~m}}\right)}$
52) Thickness of Tapered Bar using Temperature Stress
$f \mathbf{f x}=\frac{\sigma}{\mathrm{E} \cdot \alpha \cdot \Delta \mathrm{t} \cdot \frac{\mathrm{D}_{2}-\mathrm{h} 1}{\ln \left(\frac{\mathrm{D}_{2}}{\mathrm{~h} 1_{1}}\right)}}$
Open Calculator

$$
\text { ex } 0.006487 \mathrm{~m}=\frac{20 \mathrm{MPa}}{20000 \mathrm{MPa} \cdot 0.001^{\circ} \mathrm{C}^{-1} \cdot 12.5^{\circ} \mathrm{C} \cdot \frac{15 \mathrm{~m}-10 \mathrm{~m}}{\ln \left(\frac{15 \mathrm{~m}}{10 \mathrm{~m}}\right)}}
$$

Volumetric Strain of a Rectangular Bar

53) Strain along Breadth given Volumetric Strain of Rectangular Bar
$\mathrm{fx} \varepsilon_{\mathrm{b}}=\varepsilon_{\mathrm{v}}-\left(\varepsilon_{\mathrm{l}}+\varepsilon_{\mathrm{d}}\right)$
ex $-0.0052=0.0001-(0.002+0.0033)$
54) Strain along Depth given Volumetric Strain of Rectangular Bar
$f \mathrm{f} \varepsilon_{\mathrm{d}}=\varepsilon_{\mathrm{v}}-\left(\varepsilon_{\mathrm{l}}+\varepsilon_{\mathrm{b}}\right)$
Open Calculator
ex $-0.0266=0.0001-(0.002+0.0247)$
55) Strain along Length given Volumetric Strain of Rectangular Bar
$f \mathrm{f} \varepsilon_{\mathrm{l}}=\varepsilon_{\mathrm{v}}-\left(\varepsilon_{\mathrm{b}}+\varepsilon_{\mathrm{d}}\right)$
Open Calculator
ex $-0.0279=0.0001-(0.0247+0.0033)$
56) Volumetric Strain of Rectangular Bar
$\mathrm{fx} \varepsilon_{\mathrm{v}}=\varepsilon_{\mathrm{l}}+\varepsilon_{\mathrm{b}}+\varepsilon_{\mathrm{d}}$
Open Calculator
ex $0.03=0.002+0.0247+0.0033$

Volumetric Strain of Sphere ©

57) Change in Diameter given Volumetric Strain of Sphere
$f \mathrm{f} \delta_{\mathrm{dia}}=\varepsilon_{\mathrm{v}} \cdot \frac{\Phi}{3}$
ex $0.000168 \mathrm{~m}=0.0001 \cdot \frac{5.05 \mathrm{~m}}{3}$
58) Diameter of Sphere using Volumetric Strain of sphere

$$
f \mathrm{fx}=3 \cdot \frac{\delta_{\mathrm{dia}}}{\varepsilon_{\mathrm{v}}}
$$

ex $1515 \mathrm{~m}=3 \cdot \frac{0.0505 \mathrm{~m}}{0.0001}$
59) Strain given Volumetric Strain of Sphere
$\varepsilon_{\mathrm{V}} \quad$ Open Calculator $[$
$f \mathrm{fx} \varepsilon_{\mathrm{L}}=\frac{\varepsilon_{\mathrm{v}}}{3}$
ex $3.3 \mathrm{E}^{\wedge}-5=\frac{0.0001}{3}$
60) Volumetric Strain of sphere
$f \mathrm{fx} \varepsilon_{\mathrm{v}}=3 \cdot \frac{\delta_{\text {dia }}}{\Phi}$
Open Calculator
ex $0.03=3 \cdot \frac{0.0505 \mathrm{~m}}{5.05 \mathrm{~m}}$
61) Volumetric Strain of Sphere given Lateral Strain
$f \mathrm{fx} \varepsilon_{\mathrm{v}}=3 \cdot \varepsilon_{\mathrm{L}}$
ex $0.06=3 \cdot 0.02$

Variables Used

- A Area of Cross-Section (Square Millimeter)
- \mathbf{A}_{1} Area 1 (Square Meter)
- \mathbf{A}_{2} Area 2 (Square Meter)
- d Diameter of Shaft (Meter)
- \mathbf{d}_{1} Diameter1 (Meter)
- \mathbf{d}_{2} Diameter2 (Meter)
- $\mathbf{D}_{\mathbf{2}}$ Depth of Point 2 (Meter)
- $\mathbf{d}_{\text {tyre }}$ Diameter of Tyre (Meter)
- $\mathbf{D}_{\text {wheel }}$ Wheel Diameter (Meter)
- E Young's Modulus (Megapascal)
- \mathbf{h}_{1} Depth of Point 1 (Meter)
- I Length of Tapered Bar (Meter)
- L Length (Meter)
- $L_{\text {Rod }}$ Length of Rod (Meter)
- LTaperedbar Tapered Bar Length (Meter)
- t Section Thickness (Meter)
- W Load Applied KN (Kilonewton)
- W Applied load Applied Load (Kilonewton)
- W Load Applied Load SOM (Kilonewton)
- $\boldsymbol{\alpha}$ Coefficient of Linear Thermal Expansion (Per Degree Celsius)
- Y Specific Weight (Kilonewton per Cubic Meter)
- YRod Specific Weight of Rod (Kilonewton per Cubic Meter)
- $\delta_{\text {dia }}$ Change in Diameter (Meter)
- ठII Elongation (Meter)
- $\Delta \mathbf{t}$ Change in Temperature (Degree Celsius)
- ε Strain
- ε_{b} Strain along Breadth
- ε_{d} Strain along Depth
- ε_{I} Strain along Length
- ε_{L} Lateral Strain
- $\varepsilon_{\mathbf{v}}$ Volumetric Strain
- $\boldsymbol{\sigma}$ Thermal Stress (Megapascal)
- $\boldsymbol{\sigma}_{\mathbf{h}}$ Hoop Stress SOM (Megapascal)
- $\sigma_{\text {Uniform }}$ Uniform Stress (Megapascal)
- Φ Diameter of Sphere (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: e, 2.71828182845904523536028747135266249 Napier's constant
- Function: In, In(Number) Natural logarithm function (base e)
- Function: log10, log10(Number)

Common logarithm function (base 10)

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Area in Square Meter $\left(\mathrm{m}^{2}\right)$, Square Millimeter (mm^{2}) Area Unit Conversion
- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Temperature Difference in Degree Celsius ($\left.{ }^{\circ} \mathrm{C}\right)$

Temperature Difference Unit Conversion

- Measurement: Temperature Coefficient of Resistance in Per Degree Celsius (${ }^{\circ} \mathrm{C}^{-1}$)
Temperature Coefficient of Resistance Unit Conversion \longleftarrow
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion
- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

Check other formula lists

- Mohr's Circle of Stresses Formulas
- Beam Moments Formulas
- Bending Stress Formulas
- Combined Axial and Bending Loads Formulas
- Elastic Stability of Columns Formulas

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

