unitsconverters.com

Wave Period Formulas

Bookmark calculatoratoz.com, unitsconverters.com

> Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here.

List of 16 Wave Period Formulas

Wave Period

1) Average Period for Wave Period of Same Energy as Irregular Train
$\mathrm{fx}_{\mathrm{x}} \mathrm{t}_{\mathrm{avg}}=\frac{\mathrm{p}}{1.23}$
Open Calculator
ex $6.097561 \mathrm{~s}=\frac{7.5}{1.23}$
2) Wave period for horizontal fluid particle displacements
$\mathrm{P}_{\mathrm{h}}=\sqrt{4 \cdot \pi \cdot \lambda \cdot \cosh \left(2 \cdot \pi \cdot \frac{\mathrm{D}}{\lambda} / \mathrm{H} \cdot[\mathrm{g}] \cdot \cosh \left(2 \cdot \pi \cdot \frac{\mathrm{D}_{\mathrm{Z}+\mathrm{d}}}{\lambda}\right) \cdot \sin (\theta)\right)-(\varepsilon)}$
ex
$20.1876=\sqrt{4 \cdot \pi \cdot 26.8 \mathrm{~m} \cdot \cosh \left(2 \cdot \pi \cdot \frac{1.5 \mathrm{~m}}{26.8 \mathrm{~m}} / 3 \mathrm{~m} \cdot[\mathrm{~g}] \cdot \cosh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{26.8 \mathrm{~m}}\right) \cdot \sin \left(30^{\circ}\right)\right)-(0.4 \mathrm{~m})}$
3) Wave Period for Known Deepwater Celerity
$f \mathbf{x} \mathrm{p}=\frac{\mathrm{C} \cdot 2 \cdot \pi}{\mathrm{~g}]}$
ex $6.407066=\frac{010 \mathrm{~m} / \mathrm{s} \cdot 2 \cdot \pi}{[\mathrm{~g}]}$
4) Wave Period for Mediterranean Sea
$f \mathbf{f x}=4+2 \cdot(\mathrm{H})^{0.7}$
ex $8.315339=4+2 \cdot(3 \mathrm{~m})^{0.7}$
5) Wave Period for North Atlantic Ocean
$f \times \mathrm{p}=2.5 \cdot \mathrm{H}$
ex $7.5=2.5 \cdot 3 \mathrm{~m}$
6) Wave Period for North Sea
$f \mathbf{x} \mathrm{P}_{\mathrm{n}}=3.94 \cdot \mathrm{H}_{\mathrm{s}}^{0.376}$
ex $18.93004=3.94 \cdot(65 \mathrm{~m})^{0.376}$
7) Wave Period given Deepwater Celerity of SI systems Units of Meters and Seconds
$f \mathrm{f}=\frac{\mathrm{C}}{1.56}$
ex $6.410256=\frac{010 \mathrm{~m} / \mathrm{s}}{1.56}$
8) Wave Period given Deepwater Celerity of Units of Meters and Seconds
$\mathrm{fx} \mathrm{T}=\frac{\mathrm{C}}{5.12}$
ex $1.953125 \mathrm{~m} / \mathrm{s}=\frac{010 \mathrm{~m} / \mathrm{s}}{5.12}$
9) Wave Period given Deepwater Wavelength of SI Systems Units of Meters and Seconds
$f \times \mathrm{T}=\sqrt{\frac{\lambda_{\mathrm{o}}}{1.56}}$
ex $2.118296 \mathrm{~m} / \mathrm{s}=\sqrt{\frac{7 \mathrm{~m}}{1.56}}$
10) Wave Period given Deepwater Wavelength of Units of Meters and Seconds
$f \mathrm{x} T=\sqrt{\frac{\lambda_{\mathrm{o}}}{5.12}}$
ex $1.169268 \mathrm{~m} / \mathrm{s}=\sqrt{\frac{7 \mathrm{~m}}{5.12}}$
11) Wave Period given Radian Frequency of Wave
$\mathrm{fx} \mathrm{T}=\frac{2 \cdot \pi}{\omega}$
ex $1.013417 \mathrm{~m} / \mathrm{s}=\frac{2 \cdot \pi}{6.2 \mathrm{rad} / \mathrm{s}}$
12) Wave Period given Wave Celerity Ξ
$f \mathrm{~T}=\frac{\lambda}{\mathrm{C}}$
ex $2.68 \mathrm{~m} / \mathrm{s}=\frac{26.8 \mathrm{~m}}{010 \mathrm{~m} / \mathrm{s}}$
13) Wave Period given Wave Celerity and Wavelength \Im
$f \mathbf{x} p=\frac{C \cdot 2 \cdot \pi}{[g] \cdot \tanh \left(2 \cdot \pi \cdot \frac{D}{\lambda}\right)}$
ex $18.96387=\frac{010 \mathrm{~m} / \mathrm{s} \cdot 2 \cdot \pi}{[\mathrm{~g}] \cdot \tanh \left(2 \cdot \pi \cdot \frac{1.5 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}$
14) Wave period given wave depth and wavelength
$\mathrm{fx} P=\frac{\lambda \cdot \omega}{[\mathrm{g}]} \cdot \tanh (\mathrm{k} \cdot \mathrm{D})$
ex $5.624156=\frac{26.8 \mathrm{~m} \cdot 6.2 \mathrm{rad} / \mathrm{s}}{[\mathrm{g}]} \cdot \tanh (0.23 \cdot 1.5 \mathrm{~m})$
15) Wave Period given Wavelength and Water Depth
$f \times P=2$.
π
ex $7.129037=2$.

$$
\left(\left(2 \cdot \pi \cdot \frac{[\mathrm{~g}]}{26.8 \mathrm{~m}}\right) \cdot \tanh \left(2 \cdot \pi \cdot \frac{1.5 \mathrm{~m}}{26.8 \mathrm{~m}}\right)\right)^{0.5}
$$

16) Wave Period of same Energy
$f \times p=1.23 \cdot t_{\text {avg }}$
ex $7.38=1.23 \cdot 6 \mathrm{~s}$

Variables Used

- C Celerity of the Wave (Meter per Second)
- D Water Depth (Meter)
- $\mathrm{D}_{\mathrm{Z}+\mathrm{d}}$ Distance above the Bottom (Meter)
- H Wave Height (Meter)
- $\mathbf{H}_{\mathbf{s}}$ Significant Wave Height (Meter)
- k Wave Number
- p Coastal Wave Period
- P Wave Period
- $\mathbf{P}_{\mathbf{h}}$ Wave Period for Horizontal Fluid Particle
- $\mathbf{P}_{\mathbf{n}}$ Wave Period in North Sea
- T Period of Wave (Meter per Second)
- $\mathbf{t}_{\mathrm{avg}}$ Average Time (Second)
- ε Fluid Particle Displacements (Meter)
- $\boldsymbol{\theta}$ Phase Angle (Degree)
- $\boldsymbol{\lambda}$ Wavelength (Meter)
- $\boldsymbol{\lambda}_{\mathbf{o}}$ Deep-Water Wavelength (Meter)
- $\boldsymbol{\omega}$ Wave Angular Frequency (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: cosh, cosh(Number)

The hyperbolic cosine function is a mathematical function that is defined as the ratio of the sum of the exponential functions of x and negative x to 2 .

- Function: sin, sin(Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: $\boldsymbol{t a n h}, \tanh ($ Number)

The hyperbolic tangent function (tanh) is a function that is defined as the ratio of the hyperbolic sine function (sinh) to the hyperbolic cosine function (cosh).

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$) Angle Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s)

Angular Frequency Unit Conversion $\boxed{\Omega}$

Check other formula lists

- Cnoidal Wave Theory Formulas
- Horizontal and Vertical Semi-Axis of Ellipse Formulas
- Parametric Spectrum Models Formulas
- Wave Energy Formulas
- Wave Parameters Formulas
- Wave Period Formulas
- Wave Period Distribution and Wave Spectrum Formulas
- Zero-Crossing Method Formulas凹

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

