

Cnoidal Wave Theory Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Cnoidal Wave Theory Formulas

Cnoidal Wave Theory

1) Complete Elliptic Integral of Second Kind

fx $\mathrm{E_k} = - \left(\left(\left(\left(rac{\mathrm{y_t}}{\mathrm{d_c}}
ight) + \left(rac{\mathrm{H_w}}{\mathrm{d_c}}
ight) - 1
ight) \cdot rac{3 \cdot \lambda^2}{\left(16 \cdot \mathrm{d_c^2}
ight) \cdot \mathrm{K_k}}
ight) - \mathrm{K_k}
ight)$

$$27.96819 = -\left(\left(\left(\left(\frac{21\text{m}}{16\text{m}} \right) + \left(\frac{14\text{m}}{16\text{m}} \right) - 1 \right) \cdot \frac{3 \cdot \left(32\text{m} \right)^2}{\left(16 \cdot \left(16\text{m} \right)^2 \right) \cdot 28} \right) - 28 \right)$$

2) Distance from Bottom to Crest

$$\mathbf{x} \mathbf{y}_{\mathrm{c}} = \mathrm{d}_{\mathrm{c}} \cdot \left(\left(\frac{\mathrm{y}_{\mathrm{t}}}{\mathrm{d}_{\mathrm{c}}} \right) + \left(\frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{d}_{\mathrm{c}}} \right) \right)^{\mathrm{r}}$$

Open Calculator

Open Calculator

$$\boxed{\textbf{ex}} \ 35 \text{m} = 16 \text{m} \cdot \left(\left(\frac{21 \text{m}}{16 \text{m}} \right) + \left(\frac{14 \text{m}}{16 \text{m}} \right) \right)$$

3) Distance from Bottom to Wave Trough

$$\mathbf{x} \mathbf{y}_{\mathrm{t}} = \mathbf{d}_{\mathrm{c}} \cdot \left(\left(rac{\mathbf{y}_{\mathrm{c}}}{\mathbf{d}_{\mathrm{c}}}
ight) - \left(rac{\mathbf{H}_{\mathrm{w}}}{\mathbf{d}_{\mathrm{c}}}
ight)
ight)$$

Open Calculator

$$21 ext{m} = 16 ext{m} \cdot \left(\left(rac{35 ext{m}}{16 ext{m}}
ight) - \left(rac{14 ext{m}}{16 ext{m}}
ight)
ight)$$

4) Elevation above Bottom given Pressure under Cnoidal Wave in Hydrostatic Form

$$\mathbf{f}_{\mathbf{z}} \mathbf{y} = -\left(\left(rac{\mathbf{p}}{
ho_{\mathbf{s}} \cdot [\mathbf{g}]}
ight) - \mathbf{y}_{\mathbf{s}}
ight)$$

Open Calculator

ex
$$4.92$$
m = $-\left(\left(\frac{804.1453$ Pa}{1025kg/m³ · [g]}\right) - 5\right)

5) Free Surface Elevation of Solitary Waves

$$\eta = H_w \cdot \left(rac{u}{\sqrt{[g] \cdot d_c} \cdot \left(rac{H_w}{d_c}
ight)}
ight)$$

Open Calculator

$$25.5464\mathrm{m} = 14\mathrm{m} \cdot \left(\frac{20\mathrm{m/s}}{\sqrt{[\mathrm{g}] \cdot 16\mathrm{m}} \cdot \left(\frac{14\mathrm{m}}{16\mathrm{m}}\right)}\right)$$

6) Ordinate of Water Surface given Pressure under Cnoidal Wave in Hydrostatic Form

$$\mathbf{f}_{\mathbf{z}} \mathbf{y}_{s} = \left(\frac{\mathbf{p}}{\mathbf{p}_{s} \cdot [\mathbf{g}]}\right) + \mathbf{y}$$

Open Calculator

$$5 = \left(rac{804.1453 ext{Pa}}{1025 ext{kg/m}^3 \cdot [ext{g}]}
ight) + 4.92 ext{m}$$

7) Particle Velocities given Free Surface Elevation of Solitary Waves

$$u = \eta \cdot \sqrt{[g] \cdot d_c} \cdot rac{rac{H_w}{d_c}}{H_w}$$

Open Calculator 🗗

ex
$$19.99499 ext{m/s} = 25.54 ext{m} \cdot \sqrt{[g] \cdot 16 ext{m}} \cdot rac{rac{14 ext{m}}{16 ext{m}}}{14 ext{m}}$$

8) Pressure under Cnoidal Wave in Hydrostatic Form

 $p = \rho_s \cdot [g] \cdot (y_s - y)$

Open Calculator

 $= 804.1453 Pa = 1025 kg/m^3 \cdot [g] \cdot (5 - 4.92 m)$

9) Trough to Crest Wave Height

 $\mathbf{H}_{\mathrm{w}} = \mathrm{d}_{\mathrm{c}} \cdot \left(\left(\frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{d}_{\mathrm{c}}} \right) - \left(\frac{\mathrm{y}_{\mathrm{t}}}{\mathrm{d}_{\mathrm{c}}} \right) \right)$

Open Calculator

 $= 14 \text{m} = 16 \text{m} \cdot \left(\left(\frac{35 \text{m}}{16 \text{m}} \right) - \left(\frac{21 \text{m}}{16 \text{m}} \right) \right)$

10) Wave Height given Distance from Bottom to Wave Trough and Water Depth

fx Open Calculator $egin{split} H_{
m w} = - {
m d_c} \cdot \left(\left(rac{{
m y_t}}{{
m d_c}}
ight) - 1 - \left(\left(16 \cdot rac{{
m d_c^2}}{3 \cdot \lambda^2}
ight) \cdot {
m K_k} \cdot ({
m K_k} - {
m E_k})
ight)
ight) \end{split}$

ex $14.11467m = -16m \cdot \left(\left(\frac{21m}{16m} \right) - 1 - \left(\left(16 \cdot \frac{(16m)^2}{3 \cdot (32m)^2} \right) \cdot 28 \cdot (28 - 27.968) \right) \right)$

11) Wave Height Required to Produce Difference in Pressure on Seabed

 $\left(
ho_{
m s} \cdot [
m g]
ight) \cdot \left(0.5 + \left(0.5 \cdot \sqrt{1 - \left(rac{3 \cdot \Delta
m P_c}{
ho_c \cdot [
m g] \cdot d_c}
ight)}
ight)
ight)$

Open Calculator

9500Pa ex 0.991152m = - $\left(1025 \mathrm{kg/m^3 \cdot [g]}\right) \cdot \left(0.5 + \left(0.5 \cdot \sqrt{1 - \left(rac{3.9500 \mathrm{Pa}}{1025 \mathrm{kg/m^3 \cdot [g] \cdot 16 \mathrm{m}}}
ight)}
ight)
ight)$

12) Wave Height when Free Surface Elevation of Solitary Waves

Open Calculator

13) Wavelength for Complete Elliptic Integral of First Kind

Open Calculator

14) Wavelength for Distance from Bottom to Wave Trough

$$\lambda = \sqrt{rac{16 \cdot ext{d}_{ ext{c}}^2 \cdot ext{K}_{ ext{k}} \cdot (ext{K}_{ ext{k}} - ext{E}_{ ext{k}})}{3 \cdot \left(\left(rac{ ext{y}_{ ext{t}}}{ ext{d}_{ ext{c}}}
ight) + \left(rac{ ext{H}_{ ext{w}}}{ ext{d}_{ ext{c}}}
ight) - 1
ight)}}$$

$$\mathbf{ex} \ 32.09642 \mathrm{m} = \sqrt{\frac{16 \cdot \left(16 \mathrm{m}\right)^2 \cdot 28 \cdot \left(28 - 27.968\right)}{3 \cdot \left(\left(\frac{21 \mathrm{m}}{16 \mathrm{m}}\right) + \left(\frac{14 \mathrm{m}}{16 \mathrm{m}}\right) - 1\right)} }$$

Variables Used

- dc Water Depth for Cnoidal Wave (Meter)
- Ek Complete Elliptic Integral of the Second Kind
- **H**_w Height of The Wave (*Meter*)
- Hw Cnoidal Wave Height (Meter)
- **k** Modulus of the Elliptic Integrals
- Kk Complete Elliptic Integral of the First Kind
- **p** Pressure Under Wave (Pascal)
- u Particle Velocity (Meter per Second)
- **y** Elevation above the Bottom (*Meter*)
- y_c Distance from the Bottom to the Crest (Meter)
- y_s Ordinate of the Water Surface
- yt Distance from the Bottom to the Wave Trough (Meter)
- ΔP_c Change in Pressure of Coast (Pascal)
- η Free Surface Elevation (Meter)
- **\(\lambda \)** Wavelength of Wave (Meter)
- ρ_S Density of Salt Water (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: [g], 9.80665
 Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Pressure in Pascal (Pa)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion

Check other formula lists

- Cnoidal Wave Theory Formulas
- Zero-Crossing Method Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

4/25/2024 | 11:33:44 AM UTC

Please leave your feedback here...

