Time Required to Empty a Reservoir with Rectangular Weir Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here.

List of 19 Time Required to Empty a Reservoir with Rectangular Weir Formulas

Time Required to Empty a Reservoir with Rectangular Weir

1) Bazins Constant given Time Required to Lower Liquid Surface
$f \mathrm{fx}=\left(\frac{2 \cdot \mathrm{~A}_{\mathrm{R}}}{\Delta \mathrm{t} \cdot \sqrt{2 \cdot \mathrm{~g}}}\right) \cdot\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}-\frac{1}{\sqrt{\mathrm{H}_{\mathrm{Upstream}}}}\right)$
Open Calculator
$\operatorname{ex} 0.602075=\left(\frac{2 \cdot 13 \mathrm{~m}^{2}}{1.25 \mathrm{~s} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}}\right) \cdot\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}-\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)$
2) Coefficient of Discharge for Time Required to Lower Liquid Surface
$f x \mathrm{C}_{\mathrm{d}}=\left(\frac{2 \cdot \mathrm{~A}_{\mathrm{R}}}{\left(\frac{2}{3}\right) \cdot \Delta \mathrm{t} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \mathrm{~L}_{\mathrm{w}}}\right) \cdot\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}-\frac{1}{\sqrt{\mathrm{H}_{\text {Upstream }}}}\right)$
Open Calculator
$\operatorname{ex} 0.301038=\left(\frac{2 \cdot 13 \mathrm{~m}^{2}}{\left(\frac{2}{3}\right) \cdot 1.25 \mathrm{~s} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot 3 \mathrm{~m}}\right) \cdot\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}-\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)$
3) Coefficient of Discharge given Time required to Lower Liquid for Triangular Notch
$\mathrm{C}_{\mathrm{d}}=\left(\frac{\left(\frac{2}{3}\right) \cdot \mathrm{A}_{\mathrm{R}}}{\left(\frac{8}{15}\right) \cdot \Delta \mathrm{t} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \tan \left(\frac{\theta}{2}\right)}\right) \cdot\left(\left(\frac{1}{\mathrm{~h}_{2}^{\frac{3}{2}}}\right)-\left(\frac{1}{\mathrm{H}_{\mathrm{Upstream}}^{\frac{3}{2}}}\right)\right)$
ex
$0.610084=\left(\frac{\left(\frac{2}{3}\right) \cdot 13 \mathrm{~m}^{2}}{\left(\frac{8}{15}\right) \cdot 1.25 \mathrm{~s} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot \tan \left(\frac{30^{\circ}}{2}\right)}\right) \cdot\left(\left(\frac{1}{(5.1 \mathrm{~m})^{\frac{3}{2}}}\right)-\left(\frac{1}{(10.1 \mathrm{~m})^{\frac{3}{2}}}\right)\right)$
4) Cross Sectional Area given Time required to Lower Liquid for Triangular Notch
$f \mathbf{x} \mathrm{~A}_{\mathrm{R}}=\frac{\Delta \mathrm{t} \cdot\left(\frac{8}{15}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \tan \left(\frac{\theta}{2}\right)}{\left(\frac{2}{3}\right) \cdot\left(\left(\frac{1}{\mathrm{~h}_{2}^{\frac{3}{2}}}\right)-\left(\frac{1}{\mathrm{H}_{\text {Upstream }}^{\frac{3}{2}}}\right)\right)}$
ex $14.06364 \mathrm{~m}^{2}=\frac{1.25 \mathrm{~s} \cdot\left(\frac{8}{15}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot \tan \left(\frac{30^{\circ}}{2}\right)}{\left(\frac{2}{3}\right) \cdot\left(\left(\frac{1}{(5.1 \mathrm{~m})^{\frac{3}{2}}}\right)-\left(\frac{1}{(10.1 \mathrm{~m})^{\frac{3}{2}}}\right)\right)}$
5) Cross Sectional Area given Time required to Lower Liquid Surface
$f \mathbf{x} \mathrm{~A}_{\mathrm{R}}=\frac{\Delta \mathrm{t} \cdot\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \mathrm{~L}_{\mathrm{w}}}{2 \cdot\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}-\frac{1}{\sqrt{\mathrm{H}_{\text {Upstream }}}}\right)}$
ex $28.50143 \mathrm{~m}^{2}=\frac{1.25 \mathrm{~s} \cdot\left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot 3 \mathrm{~m}}{2 \cdot\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}-\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)}$
6) Cross Sectional Area given time required to Lower Liquid Surface using Bazins Formula
$f \times \mathrm{A}_{\mathrm{R}}=\frac{\Delta t \cdot m \cdot \sqrt{2 \cdot g}}{\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}-\frac{1}{\sqrt{\mathrm{H}_{\text {Upstream }}}}\right) \cdot 2}$
ex $8.787939 \mathrm{~m}^{2}=\frac{1.25 \mathrm{~s} \cdot 0.407 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}}{\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}-\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right) \cdot 2}$
7) Head given Time Required to Lower Liquid Surface using Francis Formula
$f \mathbf{f x} \mathrm{H}_{\text {Avg }}=\frac{\left(\frac{2 \cdot \mathrm{~A}_{\mathrm{R}}}{1.84 \cdot \mathrm{t}_{\mathrm{F}}}\right) \cdot\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}-\frac{1}{\sqrt{\mathrm{H}_{\text {Upstream }}}}\right)-\mathrm{L}_{\mathrm{w}}}{-0.1 \cdot \mathrm{n}}$
ex $6.888243 \mathrm{~m}=\frac{\left(\frac{2 \cdot 13 \mathrm{~m}^{2}}{1.84 \cdot 7.4 \mathrm{~s}}\right) \cdot\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}-\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)-3 \mathrm{~m}}{-0.1 \cdot 4}$
8) Head1 given Time Required to Lower Liquid for Triangular Notch
$f \times H_{\text {Upstream }}=\left(\frac{1}{\left(\frac{1}{h_{2}^{\frac{3}{2}}}\right)-\left(\frac{\Delta \mathrm{t} \cdot\left(\frac{8}{15}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot g} \cdot \tan \left(\frac{\theta}{2}\right)}{\left(\frac{2}{3}\right) \cdot \mathrm{A}_{\mathrm{R}}}\right)}\right)^{\frac{2}{3}}$
$\mathbf{e x} 11.22239 \mathrm{~m}=\left(\frac{1}{\left(\frac{1}{(5.1 \mathrm{~m})^{\frac{3}{2}}}\right)-\left(\frac{1.25 \mathrm{~s} \cdot\left(\frac{8}{15}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot \tan \left(\frac{30^{\circ}}{2}\right)}{\left(\frac{2}{3}\right) \cdot 13 \mathrm{~m}^{2}}\right)}\right)^{\frac{2}{3}}$
9) Head1 given Time Required to Lower Liquid Surface
$\mathbf{f x} \mathrm{H}_{\text {Upstream }}=\left(\left(\frac{1}{\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}\right)-\frac{\Delta \mathrm{t} \cdot\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \mathrm{~L}_{\mathrm{w}}}{2 \cdot \mathrm{~A}_{\mathrm{R}}}}\right)^{2}\right)$
$\mathbf{e x} 38.17403 \mathrm{~m}=\left(\left(\frac{1}{\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}\right)-\frac{1.25 \mathrm{~s} \cdot\left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot 3 \mathrm{~m}}{2 \cdot 13 \mathrm{~m}^{2}}}\right)^{2}\right)$
10) Head1 given Time Required to Lower Liquid Surface using Bazins Formula
$f \times H_{\text {Upstream }}=\left(\left(\frac{1}{\frac{\Delta t \cdot m \cdot \sqrt{2 \cdot g}}{2 \cdot A_{R}}-\left(\frac{1}{\sqrt{h_{2}}}\right)}\right)^{2}\right)$
ex $7.882477 \mathrm{~m}=\left(\left(\frac{1}{\frac{1.25 \mathrm{~s} \cdot 0.407 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}}{2 \cdot 13 \mathrm{~m}^{2}}-\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}\right)}\right)^{2}\right)$
11) Head2 given Time Required to Lower Liquid for Triangular Notch \longleftarrow

12) Head2 given Time Required to Lower Liquid Surface
$f \mathrm{fx} \mathrm{h}_{2}=\left(\frac{1}{\frac{\Delta \mathrm{t} \cdot\left(\frac{2}{3}\right) \cdot \mathrm{C}_{d} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \mathrm{~L}_{\mathrm{w}}}{2 \cdot \mathrm{~A}_{\mathrm{R}}}+\left(\frac{1}{\sqrt{\mathrm{H}_{\text {Upstream }}}}\right)}\right)^{2}$
ex $2.818833 \mathrm{~m}=\left(\frac{1}{\frac{1.25 \mathrm{~s} \cdot\left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot 3 \mathrm{~m}}{2 \cdot 13 \mathrm{~m}^{2}}+\left(\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)}\right)^{2}$
13) Head2 given Time Required to Lower Liquid Surface using Bazins Formula
$\mathbf{f x}_{\mathrm{x}} \mathrm{h}_{2}=\left(\frac{1}{\frac{\Delta \mathrm{t} \cdot \mathrm{m} \cdot \sqrt{2 \cdot g}}{2 \cdot \mathrm{~A}_{\mathrm{R}}}+\left(\frac{1}{\sqrt{\mathrm{H}_{\text {Upstream }}}}\right)}\right)^{2}$
Open Calculator
ex $6.209988 \mathrm{~m}=\left(\frac{1}{\frac{1.25 \mathrm{~s} \cdot 0.407 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}}{2 \cdot 13 \mathrm{~m}^{2}}+\left(\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)}\right)^{2}$
14) Length of Crest for time required to Lower Liquid Surface
$f \mathbf{f x} L_{\mathrm{w}}=\left(\frac{2 \cdot \mathrm{~A}_{\mathrm{R}}}{\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \Delta \mathrm{t}}\right) \cdot\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}-\frac{1}{\sqrt{\mathrm{H}_{\text {Upstream }}}}\right)$
Open Calculator
ex $1.368353 \mathrm{~m}=\left(\frac{2 \cdot 13 \mathrm{~m}^{2}}{\left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot 1.25 \mathrm{~s}}\right) \cdot\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}-\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)$
15) Length of Crest given Time Required to Lower Liquid Surface using Francis Formula

$$
\mathrm{L}_{\mathrm{w}}=\left(\left(\frac{2 \cdot \mathrm{~A}_{\mathrm{R}}}{1.84 \cdot \mathrm{t}_{\mathrm{F}}}\right) \cdot\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}-\frac{1}{\sqrt{\mathrm{H}_{\mathrm{Upstream}}}}\right)\right)+\left(0.1 \cdot \mathrm{n} \cdot \mathrm{H}_{\mathrm{Avg}}\right)
$$

$\operatorname{ex} 2.444703 \mathrm{~m}=\left(\left(\frac{2 \cdot 13 \mathrm{~m}^{2}}{1.84 \cdot 7.4 \mathrm{~s}}\right) \cdot\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}-\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)\right)+(0.1 \cdot 4 \cdot 5.5 \mathrm{~m})$
16) Time Required to Lower Liquid Surface
$f x \Delta t=\left(\frac{2 \cdot \mathrm{~A}_{\mathrm{R}}}{\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \mathrm{~L}_{\mathrm{w}}}\right) \cdot\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}-\frac{1}{\sqrt{\mathrm{H}_{\mathrm{Upstream}}}}\right)$
Open Calculator \longleftarrow
$\operatorname{ex} 0.570147 \mathrm{~s}=\left(\frac{2 \cdot 13 \mathrm{~m}^{2}}{\left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot 3 \mathrm{~m}}\right) \cdot\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}-\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)$
17) Time Required to Lower Liquid Surface for Triangular Notch
fx
Open Calculator
$\Delta \mathrm{t}=\left(\frac{\left(\frac{2}{3}\right) \cdot \mathrm{A}_{\mathrm{R}}}{\left(\frac{8}{15}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \tan \left(\frac{\theta}{2}\right)}\right) \cdot\left(\left(\frac{1}{\mathrm{~h}_{2}^{\frac{3}{2}}}\right)-\left(\frac{1}{\mathrm{H}_{\mathrm{Upstream}}^{\frac{3}{2}}}\right)\right)$
ex
$1.155462 \mathrm{~s}=\left(\frac{\left(\frac{2}{3}\right) \cdot 13 \mathrm{~m}^{2}}{\left(\frac{8}{15}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot \tan \left(\frac{30^{\circ}}{2}\right)}\right) \cdot\left(\left(\frac{1}{(5.1 \mathrm{~m})^{\frac{3}{2}}}\right)-\left(\frac{1}{(10.1 \mathrm{~m})^{\frac{3}{2}}}\right)\right)$
18) Time Required to Lower Liquid Surface using Bazins Formula
$\mathrm{fx} \Delta \mathrm{t}=\left(\frac{2 \cdot \mathrm{~A}_{\mathrm{R}}}{\mathrm{m} \cdot \sqrt{2 \cdot \mathrm{~g}}}\right) \cdot\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}-\frac{1}{\sqrt{\mathrm{H}_{\mathrm{Upstream}}}}\right)$
ex $1.849125 \mathrm{~s}=\left(\frac{2 \cdot 13 \mathrm{~m}^{2}}{0.407 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}}\right) \cdot\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}-\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)$
19) Time Required to Lower Liquid Surface using Francis Formula
$f x$
$\mathrm{t}_{\mathrm{F}}=\left(\frac{2 \cdot \mathrm{~A}_{\mathrm{R}}}{1.84 \cdot\left(\mathrm{~L}_{\mathrm{w}}-\left(0.1 \cdot \mathrm{n} \cdot \mathrm{H}_{\mathrm{Avg}}\right)\right)}\right) \cdot\left(\frac{1}{\sqrt{\mathrm{~h}_{2}}}-\frac{1}{\sqrt{\mathrm{H}_{\text {Upstream }}}}\right)$
$\operatorname{ex} 2.263502 \mathrm{~s}=\left(\frac{2 \cdot 13 \mathrm{~m}^{2}}{1.84 \cdot(3 \mathrm{~m}-(0.1 \cdot 4 \cdot 5.5 \mathrm{~m}))}\right) \cdot\left(\frac{1}{\sqrt{5.1 \mathrm{~m}}}-\frac{1}{\sqrt{10.1 \mathrm{~m}}}\right)$

Variables Used

- $\mathbf{A}_{\mathbf{R}}$ Cross-Sectional Area of Reservoir (Square Meter)
- C_{d} Coefficient of Discharge
- g Acceleration due to Gravity (Meter per Square Second)
- $\mathbf{h}_{\mathbf{2}}$ Head on Downstream of Weir (Meter)
- $\mathrm{H}_{\text {Avg }}$ Average Height of Downstream and Upstream (Meter)
- HUpstream Head on Upstream of Weir (Meter)
- L_{w} Length of Weir Crest (Meter)
- m Bazins Coefficient
- n Number of End Contraction
- $\mathbf{t}_{\mathbf{F}}$ Time Interval for Francis (Second)
- $\Delta \mathbf{t}$ Time Interval (Second)
- $\boldsymbol{\theta}$ Theta (Degree)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number) Square root function
- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion $\sqrt{\boxed{3}}$

- Measurement: Acceleration in Meter per Square Second ($\mathrm{m} / \mathrm{s}^{2}$) Acceleration Unit Conversion
- Measurement: Angle in Degree (${ }^{\circ}$) Angle Unit Conversion

Check other formula lists

- Broad Crested Weir Formulas
- Flow Over Rectangular Sharp-Crested Weir Rectangular Weir Formulas or Notch Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

