Strain Energy Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 44 Strain Energy Formulas

Strain Energy 준

1) Area to Maintain Stress as Wholly Compressive given Eccentricity

\qquad

$f x A=\frac{Z}{e^{\prime}}$
ex $5600 \mathrm{~mm}^{2}=\frac{1120000 \mathrm{~mm}^{3}}{200 \mathrm{~mm}}$
2) Breadth for Rectangular Section to Maintain Stress as Wholly Compressive
$f_{x} t=6 \cdot e^{\prime}$
ex $1200 \mathrm{~mm}=6 \cdot 200 \mathrm{~mm}$
3) Eccentricity for Rectangular Section to maintain Stress as Wholly Compressive
$f x e^{\prime}=\frac{t}{6}$

Open Calculator
ex $200 \mathrm{~mm}=\frac{1200 \mathrm{~mm}}{6}$
4) Eccentricity for Solid Circular Sector to Maintain Stress as Wholly Compressive
$f \mathrm{fx} \mathrm{e}^{\prime}=\frac{\Phi}{8}$
ex $95 \mathrm{~mm}=\frac{760 \mathrm{~mm}}{8}$
5) Eccentricity in Column for Hollow Circular Section when Stress at Extreme Fibre is Zero \longleftarrow
$f \mathrm{f} \mathrm{e}^{\prime}=\frac{\mathrm{D}^{2}+\mathrm{d}_{\mathrm{i}}^{2}}{8 \cdot \mathrm{D}}$
Open Calculator
ex $1281.25 \mathrm{~mm}=\frac{(4000 \mathrm{~mm})^{2}+(5000 \mathrm{~mm})^{2}}{8 \cdot 4000 \mathrm{~mm}}$
6) Eccentricity to Maintain Stress as Wholly Compressive
$f \mathrm{x} \mathrm{e}^{\prime}=\frac{\mathrm{Z}}{\mathrm{A}}$
Open Calculator
ex $200 \mathrm{~mm}=\frac{1120000 \mathrm{~mm}^{3}}{5600 \mathrm{~mm}^{2}}$
7) Section Modulus to Maintain Stress as Wholly Compressive given Eccentricity
fx $Z=e^{\prime} \cdot \mathrm{A}$
ex $1.1 \mathrm{E}^{\wedge} 6 \mathrm{~mm}^{3}=200 \mathrm{~mm} \cdot 5600 \mathrm{~mm}^{2}$

Strain Energy in Structural Members ©

8) Bending Moment using Strain Energy
$f \mathrm{fx}=\sqrt{\mathrm{U} \cdot \frac{2 \cdot \mathrm{E} \cdot \mathrm{I}}{\mathrm{L}}}$
Open Calculator
ex $53.87987 \mathrm{kN}^{*} \mathrm{~m}=\sqrt{136.08 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{2 \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}{3000 \mathrm{~mm}}}$
9) Length over which Deformation takes place given Strain Energy in Shear $\boxed{\checkmark}$
$\mathrm{fx} \mathrm{L}=2 \cdot \mathrm{U} \cdot \mathrm{A} \cdot \frac{\mathrm{G}_{\text {Torsion }}}{\mathrm{V}^{2}}$
ex $2981.263 \mathrm{~mm}=2 \cdot 136.08 \mathrm{~N}^{*} \mathrm{~m} \cdot 5600 \mathrm{~mm}^{2} \cdot \frac{40 \mathrm{GPa}}{(143 \mathrm{kN})^{2}}$
10) Length over which Deformation takes place given Strain Energy in Torsion
$f \mathrm{x} L=\frac{2 \cdot \mathrm{U} \cdot \mathrm{J} \cdot \mathrm{G}_{\text {Torsion }}}{\mathrm{T}^{2}}$
ex $3003.729 \mathrm{~mm}=\frac{2 \cdot 136.08 \mathrm{~N}^{*} \mathrm{~m} \cdot 4.1 \mathrm{e}-3 \mathrm{~m}^{4} \cdot 40 \mathrm{GPa}}{\left(121.9 \mathrm{kN}^{*} \mathrm{~m}\right)^{2}}$
11) Length over which Deformation takes place using Strain Energy
$\mathrm{fx} \mathrm{L}=\left(\mathrm{U} \cdot \frac{2 \cdot \mathrm{E} \cdot \mathrm{I}}{\mathrm{M}^{2}}\right)$
ex $3008.914 \mathrm{~mm}=\left(136.08 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{2 \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}{\left(53.8 \mathrm{kN}{ }^{*} \mathrm{~m}\right)^{2}}\right)$
12) Modulus of Elasticity with given Strain Energy
$f \mathrm{x} E=\left(\mathrm{L} \cdot \frac{\mathrm{M}^{2}}{2 \cdot \mathrm{U} \cdot \mathrm{I}}\right)$
ex $19940.75 \mathrm{MPa}=\left(3000 \mathrm{~mm} \cdot \frac{\left(53.8 \mathrm{kN}{ }^{*} \mathrm{~m}\right)^{2}}{2 \cdot 136.08 \mathrm{~N}^{*} \mathrm{~m} \cdot 0.0016 \mathrm{~m}^{4}}\right)$
13) Moment of Inertia using Strain Energy
$f \mathbf{x}=\mathrm{L} \cdot\left(\frac{\mathrm{M}^{2}}{2 \cdot \mathrm{U} \cdot \mathrm{E}}\right)$
ex $0.001595 \mathrm{~m}^{4}=3000 \mathrm{~mm} \cdot\left(\frac{(53.8 \mathrm{kN} * \mathrm{~m})^{2}}{2 \cdot 136.08 \mathrm{~N}^{*} \mathrm{~m} \cdot 20000 \mathrm{MPa}}\right)$
14) Polar Moment of Inertia given Strain Energy in Torsion
$\mathbf{f x} \mathrm{J}=\left(\mathrm{T}^{2}\right) \cdot \frac{\mathrm{L}}{2 \cdot \mathrm{U} \cdot \mathrm{G}_{\text {Torsion }}}$
Open Calculator
ex $0.004095 \mathrm{~m}^{4}=\left(\left(121.9 \mathrm{kN}^{*} \mathrm{~m}\right)^{2}\right) \cdot \frac{3000 \mathrm{~mm}}{2 \cdot 136.08 \mathrm{~N}^{*} \mathrm{~m} \cdot 40 \mathrm{GPa}}$
15) Shear Area given Strain Energy in Shear
$f x \mathrm{~A}=\left(\mathrm{V}^{2}\right) \cdot \frac{\mathrm{L}}{2 \cdot \mathrm{U} \cdot \mathrm{G}_{\text {Torsion }}}$
Open Calculator
ex $5635.196 \mathrm{~mm}^{2}=\left((143 \mathrm{kN})^{2}\right) \cdot \frac{3000 \mathrm{~mm}}{2 \cdot 136.08 \mathrm{~N}^{*} \mathrm{~m} \cdot 40 \mathrm{GPa}}$
16) Shear Force using Strain Energy
$f \mathrm{x} \mathrm{V}=\sqrt{2 \cdot \mathrm{U} \cdot \mathrm{A} \cdot \frac{\mathrm{G}_{\text {Torsion }}}{\mathrm{L}}}$
Open Calculator
ex $142.5527 \mathrm{kN}=\sqrt{2 \cdot 136.08 \mathrm{~N}^{*} \mathrm{~m} \cdot 5600 \mathrm{~mm}^{2} \cdot \frac{40 \mathrm{GPa}}{3000 \mathrm{~mm}}}$
17) Shear Modulus of Elasticity given Strain Energy in Shear
$f \mathrm{fx} \mathrm{G}_{\text {Torsion }}=\left(\mathrm{V}^{2}\right) \cdot \frac{\mathrm{L}}{2 \cdot \mathrm{~A} \cdot \mathrm{U}}$
ex $40.2514 \mathrm{GPa}=\left((143 \mathrm{kN})^{2}\right) \cdot \frac{3000 \mathrm{~mm}}{2 \cdot 5600 \mathrm{~mm}^{2} \cdot 136.08 \mathrm{~N}^{*} \mathrm{~m}}$
18) Shear Modulus of Elasticity given Strain Energy in Torsion
$f \times \mathrm{G}_{\text {Torsion }}=\left(\mathrm{T}^{2}\right) \cdot \frac{\mathrm{L}}{2 \cdot \mathrm{~J} \cdot \mathrm{U}}$
ex $39.95034 \mathrm{GPa}=\left(\left(121.9 \mathrm{kN}^{*} \mathrm{~m}\right)^{2}\right) \cdot \frac{3000 \mathrm{~mm}}{2 \cdot 4.1 \mathrm{e}-3 \mathrm{~m}^{4} \cdot 136.08 \mathrm{~N}^{*} \mathrm{~m}}$
19) Strain Energy for Pure Bending when Beam rotates in One End
$f x \mathrm{U}=\left(\mathrm{E} \cdot \mathrm{I} \cdot \frac{\left(\theta \cdot\left(\frac{\pi}{180}\right)\right)^{2}}{2 \cdot \mathrm{~L}}\right)$
ex $111.3501 \mathrm{~N}^{*} \mathrm{~m}=\left(20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4} \cdot \frac{\left(15^{\circ} \cdot\left(\frac{\pi}{180}\right)\right)^{2}}{2 \cdot 3000 \mathrm{~mm}}\right)$
20) Strain Energy in Bending
$f \mathrm{f} \mathrm{U}=\left(\left(\mathrm{M}^{2}\right) \cdot \frac{\mathrm{L}}{2 \cdot \mathrm{E} \cdot \mathrm{I}}\right)$
Open Calculator
ex $135.6769 \mathrm{~N}^{*} \mathrm{~m}=\left(\left(\left(53.8 \mathrm{kN}^{*} \mathrm{~m}\right)^{2}\right) \cdot \frac{3000 \mathrm{~mm}}{2 \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}\right)$
21) Strain Energy in Shear 〔
$f \mathrm{fx}=\left(\mathrm{V}^{2}\right) \cdot \frac{\mathrm{L}}{2 \cdot \mathrm{~A} \cdot \mathrm{G}_{\text {Torsion }}}$
Open Calculator
ex $136.9353 \mathrm{~N}^{*} \mathrm{~m}=\left((143 \mathrm{kN})^{2}\right) \cdot \frac{3000 \mathrm{~mm}}{2 \cdot 5600 \mathrm{~mm}^{2} \cdot 40 \mathrm{GPa}}$
22) Strain Energy in Shear given Shear Deformation
$f \mathrm{f} U=\frac{\mathrm{A} \cdot \mathrm{G}_{\text {Torsion }} \cdot\left(\Delta^{2}\right)}{2 \cdot L}$
$\operatorname{ex} 933.3333 \mathrm{~N}^{*} \mathrm{~m}=\frac{5600 \mathrm{~mm}^{2} \cdot 40 \mathrm{GPa} \cdot\left((0.005)^{2}\right)}{2 \cdot 3000 \mathrm{~mm}}$
23) Strain Energy in Torsion given Angle of Twist
$\mathrm{fx} \mathrm{U}=\frac{\mathrm{J} \cdot \mathrm{G}_{\text {Torsion }} \cdot\left(\theta \cdot\left(\frac{\pi}{180}\right)\right)^{2}}{2 \cdot \mathrm{~L}}$
Open Calculator
ex $570.6694 \mathrm{~N}^{*} \mathrm{~m}=\frac{4.1 \mathrm{e}-3 \mathrm{~m}^{4} \cdot 40 \mathrm{GPa} \cdot\left(15^{\circ} \cdot\left(\frac{\pi}{180}\right)\right)^{2}}{2 \cdot 3000 \mathrm{~mm}}$
24) Strain Energy in Torsion given Polar MI and Shear Modulus of Elasticity
$f \mathrm{fx} \mathrm{U}=\left(\mathrm{T}^{2}\right) \cdot \frac{\mathrm{L}}{2 \cdot \mathrm{~J} \cdot \mathrm{G}_{\text {Torsion }}}$
Open Calculator
ex $135.9111 \mathrm{~N}^{*} \mathrm{~m}=\left(\left(121.9 \mathrm{kN}^{*} \mathrm{~m}\right)^{2}\right) \cdot \frac{3000 \mathrm{~mm}}{2 \cdot 4.1 \mathrm{e}-3 \mathrm{~m}^{4} \cdot 40 \mathrm{GPa}}$
25) Stress using Hook's Law
$f \mathrm{fx} \sigma=\mathrm{E} \cdot \varepsilon_{\mathrm{L}}$
ex $400 \mathrm{MPa}=20000 \mathrm{MPa} \cdot 0.02$
26) Torque given Strain Energy in Torsion
$f \mathrm{f} T=\sqrt{2 \cdot \mathrm{U} \cdot \mathrm{J} \cdot \frac{\mathrm{G}_{\text {Torsion }}}{\mathrm{L}}}$
ex $121.9757 \mathrm{kN}^{*} \mathrm{~m}=\sqrt{2 \cdot 136.08 \mathrm{~N}^{*} \mathrm{~m} \cdot 4.1 \mathrm{e}-3 \mathrm{~m}^{4} \cdot \frac{40 \mathrm{GPa}}{3000 \mathrm{~mm}}}$

Strain Energy stored by the Member

27) Area of Member given Strain Energy Stored by Member
$f \times \mathrm{A}=\frac{2 \cdot \mathrm{E} \cdot \mathrm{U}_{\text {member }}}{\mathrm{L} \cdot \sigma^{2}}$
ex $5599.999 \mathrm{~mm}^{2}=\frac{2 \cdot 20000 \mathrm{MPa} \cdot 301.2107 \mathrm{~N}^{*} \mathrm{~m}}{3000 \mathrm{~mm} \cdot(26.78 \mathrm{MPa})^{2}}$
28) Length of Member given Strain Energy Stored by Member
$\mathrm{fx} \mathrm{L}=\frac{2 \cdot \mathrm{E} \cdot \mathrm{U}_{\text {member }}}{\mathrm{A} \cdot \sigma^{2}}$
Open Calculator
ex $3000 \mathrm{~mm}=\frac{2 \cdot 20000 \mathrm{MPa} \cdot 301.2107 \mathrm{~N}^{*} \mathrm{~m}}{5600 \mathrm{~mm}^{2} \cdot(26.78 \mathrm{MPa})^{2}}$
29) Modulus of Elasticity of Member given Strain Energy Stored by Member
$f \mathrm{fx}=\frac{\left(\sigma^{2}\right) \cdot \mathrm{A} \cdot \mathrm{L}}{2 \cdot \mathrm{U}_{\text {member }}}$
Open Calculator \longleftarrow
ex $20000 \mathrm{MPa}=\frac{\left((26.78 \mathrm{MPa})^{2}\right) \cdot 5600 \mathrm{~mm}^{2} \cdot 3000 \mathrm{~mm}}{2 \cdot 301.2107 \mathrm{~N}^{*} \mathrm{~m}}$
30) Strain Energy Stored by Member
$f \mathrm{fx} \mathrm{U}_{\text {member }}=\left(\frac{\sigma^{2}}{2 \cdot \mathrm{E}}\right) \cdot \mathrm{A} \cdot \mathrm{L}$
Open Calculator 〔
ex $301.2107 \mathrm{~N}^{*} \mathrm{~m}=\left(\frac{(26.78 \mathrm{MPa})^{2}}{2 \cdot 20000 \mathrm{MPa}}\right) \cdot 5600 \mathrm{~mm}^{2} \cdot 3000 \mathrm{~mm}$
31) Stress of Member given Strain Energy Stored by Member
$\mathrm{fx} \sigma=\sqrt{\frac{2 \cdot \mathrm{U}_{\text {member }} \cdot \mathrm{E}}{\mathrm{A} \cdot \mathrm{L}}}$
ex $26.78 \mathrm{MPa}=\sqrt{\frac{2 \cdot 301.2107 \mathrm{~N}^{*} \mathrm{~m} \cdot 20000 \mathrm{MPa}}{5600 \mathrm{~mm}^{2} \cdot 3000 \mathrm{~mm}}}$

Strain Energy stored per unit Volume ©

32) Modulus of Elasticity of Member with known Strain Energy Stored per Unit Volume
$f \mathbf{f x}=\frac{\sigma^{2}}{2 \cdot \mathrm{U}_{\text {density }}}$

Open Calculator $\sqrt{ }$
ex $20000 \mathrm{MPa}=\frac{(26.78 \mathrm{MPa})^{2}}{2 \cdot 17929.21 \mathrm{~J} / \mathrm{m}^{3}}$
33) Strain Energy Stored per Unit Volume
$f x U_{\text {density }}=\frac{\sigma^{2}}{2 \cdot E}$
Open Calculator
ex $17929.21 \mathrm{~J} / \mathrm{m}^{3}=\frac{(26.78 \mathrm{MPa})^{2}}{2 \cdot 20000 \mathrm{MPa}}$
34) Stress generated due to Strain Energy Stored per Unit Volume
$\mathrm{fx} \sigma=\sqrt{\mathrm{U}_{\text {density }} \cdot 2 \cdot \mathrm{E}}$
ex $26.78 \mathrm{MPa}=\sqrt{17929.21 \mathrm{~J} / \mathrm{m}^{3} \cdot 2 \cdot 20000 \mathrm{MPa}}$
Stress due to

Gradually Applied Load

35) Area given Stress due to gradually Applied Load
$f \mathbf{A}=\frac{W_{\text {Applied load }}}{\sigma}$
Open Calculator \longleftarrow
ex $5601.195 \mathrm{~mm}^{2}=\frac{150 \mathrm{kN}}{26.78 \mathrm{MPa}}$
36) Load given Stress due to gradually Applied Load
fx $W_{\text {Applied load }}=\sigma \cdot \mathrm{A}$
Open Calculator
ex $149.968 \mathrm{kN}=26.78 \mathrm{MPa} \cdot 5600 \mathrm{~mm}^{2}$
37) Stress due to gradually Applied Load
$\mathrm{fx} \sigma=\frac{\mathrm{W}_{\text {Applied load }}}{\mathrm{A}}$
Open Calculator 〔
ex $26.78571 \mathrm{MPa}=\frac{150 \mathrm{kN}}{5600 \mathrm{~mm}^{2}}$
Impact Load
38) Stress due to Impact Load
fx
$\sigma=\left(\frac{\mathrm{W}_{\text {Applied load }}}{\mathrm{A}}\right)+\sqrt{\left(\frac{\mathrm{W}_{\text {Applied load }}}{\mathrm{A}}\right)^{2}+\frac{2 \cdot \mathrm{~W}_{\text {Applied load }} \cdot \mathrm{h} \cdot \mathrm{E}}{\mathrm{A} \cdot \mathrm{L}}}$

$$
2097.156 \mathrm{MPa}=\left(\frac{150 \mathrm{kN}}{5600 \mathrm{~mm}^{2}}\right)+\sqrt{\left(\frac{150 \mathrm{kN}}{5600 \mathrm{~mm}^{2}}\right)^{2}+\frac{2 \cdot 150 \mathrm{kN} \cdot 12000 \mathrm{~mm} \cdot 20000 \mathrm{MPa}}{5600 \mathrm{~mm}^{2} \cdot 3000 \mathrm{~mm}}}
$$

Shear Resilience

39) Modulus of Rigidity given Shear Resilience
$f \mathrm{fx} \mathrm{G}_{\text {Torsion }}=\frac{\tau^{2}}{2 \cdot \mathrm{SEV}}$
ex $40 \mathrm{GPa}=\frac{(55 \mathrm{MPa})^{2}}{2 \cdot 37812.5 \mathrm{~J} / \mathrm{m}^{3}}$
40) Shear Resilience
$f \mathbf{x E V}=\frac{\tau^{2}}{2 \cdot \mathrm{G}_{\text {Torsion }}}$
ex $37812.5 \mathrm{~J} / \mathrm{m}^{3}=\frac{(55 \mathrm{MPa})^{2}}{2 \cdot 40 \mathrm{GPa}}$
41) Shear Stress given Shear Resilience
$\mathrm{fx} \tau=\sqrt{2 \cdot \mathrm{SEV} \cdot \mathrm{G}_{\text {Torsion }}}$
ex $55 \mathrm{MPa}=\sqrt{2 \cdot 37812.5 \mathrm{~J} / \mathrm{m}^{3} \cdot 40 \mathrm{GPa}}$

Suddenly Applied Load

42) Area given Stress due to suddenly Applied Load
$f \mathrm{fx}=2 \cdot \frac{\mathrm{~W}_{\text {Applied load }}}{\sigma}$
ex $11202.39 \mathrm{~mm}^{2}=2 \cdot \frac{150 \mathrm{kN}}{26.78 \mathrm{MPa}}$
43) Load given Stress due to suddenly Applied Load

$$
f \times W_{\text {Applied load }}=\sigma \cdot \frac{\mathrm{A}}{2}
$$

ex $74.984 \mathrm{kN}=26.78 \mathrm{MPa} \cdot \frac{5600 \mathrm{~mm}^{2}}{2}$44) Stress due to suddenly Applied Load
$f \mathrm{f} \sigma=2 \cdot \frac{\mathrm{~W}_{\text {Applied load }}}{\mathrm{A}}$ex $53.57143 \mathrm{MPa}=2 \cdot \frac{150 \mathrm{kN}}{5600 \mathrm{~mm}^{2}}$

Variables Used

- A Area of Cross-Section (Square Millimeter)
- D Outer Depth (Millimeter)
- $\mathbf{d}_{\mathbf{i}}$ Inner Depth (Millimeter)
- e' Eccentricity of Load (Millimeter)
- E Young's Modulus (Megapascal)
- $\mathbf{G}_{\text {Torsion }}$ Modulus of Rigidity (Gigapascal)
- h Height of Crack (Millimeter)
- I Area Moment of Inertia (Meter4)
- J Polar Moment of Inertia (Meter4)
- L Length of Member (Millimeter)
- M Bending Moment (Kilonewton Meter)
- SEV Shear Resilience (Joule per Cubic Meter)
- t Dam Thickness (Millimeter)
- T Torque SOM (Kilonewton Meter)
- U Strain Energy (Newton Meter)
- Udensity Strain Energy Density (Joule per Cubic Meter)
- Umember Strain Energy stored by Member (Newton Meter)
- V Shear Force (Kilonewton)
- W Applied load Applied Load (Kilonewton)
- Z Section Modulus for Eccentric Load on Beam (Cubic Millimeter)
- Δ Shear Deformation
- ε_{L} Lateral Strain
- $\boldsymbol{\theta}$ Angle of Twist (Degree)
- $\boldsymbol{\sigma}$ Direct Stress (Megapascal)
- t Shear Stress (Megapascal)
- Ф Diameter of Circular Shaft (Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Volume in Cubic Millimeter (mm ${ }^{3}$) Volume Unit Conversion
- Measurement: Area in Square Millimeter (mm²)

Area Unit Conversion

- Measurement: Pressure in Gigapascal (GPa)

Pressure Unit Conversion

- Measurement: Energy in Newton Meter (N*m) Energy Unit Conversion
- Measurement: Force in Kilonewton (kN) Force Unit Conversion
- Measurement: Angle in Degree (${ }^{\circ}$) Angle Unit Conversion
- Measurement: Torque in Kilonewton Meter (kN*m) Torque Unit Conversion
- Measurement: Moment of Force in Kilonewton Meter (kN*m) Moment of Force Unit Conversion
- Measurement: Energy Density in Joule per Cubic Meter ($\mathrm{J} / \mathrm{m}^{3}$) Energy Density Unit Conversion
- Measurement: Second Moment of Area in Meter ${ }^{4}\left(\mathrm{~m}^{4}\right)$

Second Moment of Area Unit Conversion

- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

Check other formula lists

- Mohr's Circle of Stresses Formulas \preceq
- Beam Moments Formulas
- Bending Stress Formulas
- Combined Axial and Bending Loads Formulas
- Elastic Constants Formulas
- Elastic Stability of Columns Formulas \int
- Principal Stress Formulas
- Shear Stress Formulas
- Slope and Deflection Formulas
- Strain Energy Formulas 〔
- Stress and Strain Formulas
- Torsion Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

