

Principal Stress Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

Open Calculator

Open Calculator

Open Calculator

Open Calculator

List of 32 Principal Stress Formulas

Principal Stress

Combined Bending and Torsion Condition

1) Angle of Twist in Combined Bending and Torsion

$$heta = rac{rctan\left(rac{T}{M}
ight)}{2}$$

$$extbf{ex} \left[29.99995
ight. ^{\circ} = rac{rctan \left(rac{0.116913 MPa}{67.5 kN^* m}
ight)}{2}
ight.$$

2) Angle of Twist in Combined Bending and Torsional Stress

$$\theta = 0.5 \cdot \arctan \left(2 \cdot rac{T}{\sigma_b}
ight)$$

$$\boxed{\textbf{ex}} 8.995819^\circ = 0.5 \cdot \arctan \bigg(2 \cdot \frac{0.116913 \text{MPa}}{0.72 \text{MPa}} \bigg)$$

3) Bending Moment given Combined Bending and Torsion

$$\mathbf{M} = rac{\mathrm{T}}{ an(2 \cdot heta)}$$

$$= \frac{67.49975 \text{kN*m} = \frac{0.116913 \text{MPa}}{\tan(2 \cdot 30^{\circ})}$$

4) Bending Stress given Combined Bending and Torsional Stress

$$\sigma_b = \frac{T}{\frac{\tan(2\cdot\theta)}{2}}$$

5) Torsional Moment when Member is subjected to both Bending and Torsion

$$ag{T} = ext{M} \cdot (an(2 \cdot heta))$$

$$\mathbf{ex} = 0.116913 \text{MPa} = 67.5 \text{kN*m} \cdot (\tan(2 \cdot 30^{\circ}))$$

6) Torsional Stress given Combined Bending and Torsional Stress

$$\mathrm{T} = \left(rac{ an(2\cdot heta)}{2}
ight)\cdot\sigma_{\mathrm{b}}$$

Open Calculator 6

$$\boxed{\textbf{ex} 0.623538\text{MPa} = \left(\frac{\tan(2\cdot30^\circ)}{2}\right)\cdot0.72\text{MPa}}$$

Complementary Induced Stress

7) Angle of Oblique Plane using Normal Stress when Complementary Shear Stresses Induced 🗹

$$au = rac{a \sin \left(rac{\sigma_{ heta}}{ au}
ight)}{2}$$

Open Calculator

$$oxed{egin{aligned} egin{aligned} oxed{44.4537}^\circ &= rac{a\sin\left(rac{54.99 ext{MPa}}{55 ext{MPa}}
ight)}{2} \end{aligned}}$$

8) Angle of Oblique Plane using Shear Stress when Complementary Shear Stresses Induced 🛂

$$\theta = 0.5 \cdot \arccos \left(rac{ au_{ heta}}{ au}
ight)$$

Open Calculator

$$29.61052^{\circ} = 0.5 \cdot \arccos\left(\frac{28.145 \text{MPa}}{55 \text{MPa}}\right)$$

9) Normal Stress when Complementary Shear Stresses Induced 🗗 fx $\sigma_{\theta} = \tau \cdot \sin(2 \cdot \theta)$

Open Calculator G

10) Shear Stress along Oblique Plane when Complementary Shear Stresses Induced

fx
$$\left[au_{ heta} = au \cdot \cos(2 \cdot heta)
ight]$$

Open Calculator

11) Shear Stress due to Effect of Complementary Shear Stresses and Shear Stress in Oblique Plane

$$au = rac{ au_{ heta}}{\cos(2\cdot heta)}$$

Open Calculator 🚰

$$au = rac{ au}{\cos(2\cdot heta)}$$

$$\mathbf{ex}$$
 56.29MPa = $\frac{28.145 \text{MPa}}{\cos(2 \cdot 30^{\circ})}$

12) Shear Stress due to Induced Complementary Shear Stresses and Normal Stress on Oblique Plane

$$au = rac{\sigma_{ heta}}{\sin(2\cdot heta)}$$

Open Calculator 🚰

Equivalent Bending Moment & Torque

13) Bending Stress of Circular Shaft given Equivalent Bending Moment

$$\sigma_{
m b} = rac{32 \cdot {
m M_e}}{\pi \cdot \left(\Phi^3
ight)}$$

Open Calculator 🚰

ex
$$0.724332 \text{MPa} = \frac{32 \cdot 30 \text{kN*m}}{\pi \cdot \left((750 \text{mm})^3 \right)}$$

14) Diameter of Circular Shaft for Equivalent Torque and Maximum Shear Stress

$$\Phi = \left(rac{16\cdot T_{
m e}}{\pi\cdot (au_{
m max})}
ight)^{rac{1}{3}}$$

Open Calculator

ex
$$157.1413$$
mm = $\left(\frac{16 \cdot 32$ kN*m}{\pi \cdot (42MPa) $\right)^{\frac{1}{3}}$

15) Diameter of Circular Shaft given Equivalent Bending Stress

$$\Phi = \left(rac{32\cdot \mathrm{M_e}}{\pi\cdot(\sigma_\mathrm{b})}
ight)^rac{1}{3}$$

Open Calculator

ex
$$751.5011 \text{mm} = \left(\frac{32 \cdot 30 \text{kN*m}}{\pi \cdot (0.72 \text{MPa})}\right)^{\frac{1}{3}}$$

16) Equivalent Bending Moment of Circular Shaft 🗗

$$M_e = rac{\sigma_b}{rac{32}{\pi \cdot (\Phi^3)}}$$

Open Calculator 🚰

$$m M_e = rac{\sigma_b}{rac{32}{\pi \cdot (\Phi^3)}}$$

$$= \frac{29.82059 \text{kN*m} = \frac{0.72 \text{MPa}}{\frac{32}{\pi \cdot \left((750 \text{mm})^3 \right)}}$$

17) Equivalent Torque given Maximum Shear Stress

$$T_{
m e}=rac{ au_{
m max}}{16} \ rac{16}{\pi\cdot(\Phi^3)}$$

Open Calculator

$$= \frac{42 MPa}{\frac{16}{\pi \cdot \left((750 mm)^3 \right)}}$$

18) Location of Principal Planes

$$\theta = \left(\left(\left(\frac{1}{2} \right) \cdot a \tan \left(\frac{2 \cdot \tau_{xy}}{\sigma_y - \sigma_x} \right) \right) \right)$$

Open Calculator

$$\boxed{ \mathbf{ex} \left[6.245735^\circ = \left(\left(\left(\frac{1}{2} \right) \cdot a \tan \left(\frac{2 \cdot 7.2 \mathrm{MPa}}{110 \mathrm{MPa} - 45 \mathrm{MPa}} \right) \right) \right) \right] }$$

19) Maximum Shear Stress due to Equivalent Torque

$$au_{
m max} = rac{16 \cdot {
m T_e}}{\pi \cdot \left(\Phi^3
ight)}$$

Open Calculator

Maximum Shear Stress on the Biaxial Loading 🗗

20) Maximum Shear Stress when Member is Subjected to like Principal Stresses 🗹

1

$$au_{ ext{max}} = rac{1}{2} \cdot \left(\sigma_{ ext{y}} - \sigma_{ ext{x}}
ight)$$

Open Calculator 🚰

- 21) Stress along X-Axis when Member is Subjected to like Principal Stresses and Max Shear Stress 🖸

$$\sigma_{
m x} = \sigma_{
m y} - (2 \cdot au_{
m max})$$

Open Calculator 🗗

- $\textbf{ex} \ 26 \text{MPa} = 110 \text{MPa} (2 \cdot 42 \text{MPa})$
- 22) Stress along Y-Axis when Member is Subjected to like Principal Stresses and Max Shear Stress

fx
$$\sigma_{
m y} = 2 \cdot au_{
m max} + \sigma_{
m x}$$

Open Calculator

Stresses in Bi-Axial Loading 🗗

23) Normal Stress Induced in Oblique Plane due to Biaxial Loading

 $\sigma_{\theta} = \left(\frac{1}{2} \cdot \left(\sigma_{x} + \sigma_{y}\right)\right) + \left(\frac{1}{2} \cdot \left(\sigma_{x} - \sigma_{y}\right) \cdot \left(\cos(2 \cdot \theta)\right)\right) + \left(\tau_{xy} \cdot \sin(2 \cdot \theta)\right)$

Open Calculator 🗗

ex

 $\boxed{67.48538 \text{MPa} = \left(\frac{1}{2} \cdot (45 \text{MPa} + 110 \text{MPa})\right) + \left(\frac{1}{2} \cdot (45 \text{MPa} - 110 \text{MPa}) \cdot (\cos(2 \cdot 30^{\circ}))\right) + (7.2 \text{MPa} \cdot \sin(2 \cdot 30^{\circ})) + (7.2 \text{MPa} \cdot \sin(2 \cdot 30^{\circ}))\right)} + (7.2 \text{MPa} \cdot \sin(2 \cdot 30^{\circ})) +$

24) Shear Stress Induced in Oblique Plane due to Biaxial Loading

 $au_{ heta} = -igg(rac{1}{2}\cdotig(\sigma_{ ext{x}} - \sigma_{ ext{y}}ig)\cdot\sin(2\cdot heta)igg) + ig(au_{ ext{xy}}\cdot\cos(2\cdot heta)ig)$

Open Calculator

 $\boxed{\texttt{ex}} \left[31.74583 \text{MPa} = - \left(\frac{1}{2} \cdot \left(45 \text{MPa} - 110 \text{MPa} \right) \cdot \sin(2 \cdot 30^\circ) \right) + \left(7.2 \text{MPa} \cdot \cos(2 \cdot 30^\circ) \right) \right]$

25) Stress along X- Direction with known Shear Stress in Bi-Axial Loading

 $\sigma_{\mathrm{x}} = \sigma_{\mathrm{y}} - \left(rac{ au_{\mathrm{ heta}} \cdot 2}{\sin(2 \cdot heta)}
ight)$

Open Calculator

26) Stress along Y- Direction using Shear Stress in Bi-Axial Loading

 $\sigma_{
m y} = \sigma_{
m x} + \left(rac{ au_{
m heta} \cdot 2}{\sin(2 \cdot heta)}
ight)$

Open Calculator

ex $109.9981\text{MPa} = 45\text{MPa} + \left(\frac{28.145\text{MPa} \cdot 2}{\sin(2 \cdot 30^{\circ})}\right)$

Stresses of Members Subjected to Axial Loading

27) Angle of Oblique Plane using Shear Stress and Axial Load

 $au = rac{ar\sin\left(\left(rac{2\cdot au_0}{\sigma_{
m y}}
ight)
ight)}{2}$

Open Calculator 🗗

28) Angle of Oblique plane when Member Subjected to Axial Loading

$$heta=rac{a\cos\left(rac{\sigma_{_{0}}}{\sigma_{_{y}}}
ight)}{2}$$

$$egin{aligned} \mathbf{ex} \ 30.00301 \ ^{\circ} = rac{a\cos\left(rac{54.99\mathrm{MPa}}{110\mathrm{MPa}}
ight)}{2} \end{aligned}$$

29) Normal Stress when Member Subjected to Axial Load

fx
$$\sigma_{\theta} = \sigma_{y} \cdot \cos(2 \cdot \theta)$$

$$\mathbf{ex} \ 55 \mathrm{MPa} = 110 \mathrm{MPa} \cdot \cos(2 \cdot 30^{\circ})$$

30) Shear Stress when Member Subjected to Axial Load

fx
$$au_{ heta} = 0.5 \cdot \sigma_y \cdot \sin(2 \cdot \theta)$$

31) Stress along Y-direction given Shear Stress in Member subjected to Axial Load

$$\sigma_{
m y} = rac{ au_{
m heta}}{0.5 \cdot \sin(2 \cdot heta)}$$

32) Stress along Y-direction when Member Subjected to Axial Load

$$\sigma_{
m y} = rac{\sigma_{
m heta}}{\cos(2 \cdot heta)}$$

$$\boxed{\textbf{ex} \left[109.98 \text{MPa} = \frac{54.99 \text{MPa}}{\cos(2 \cdot 30^\circ)} \right]}$$

Variables Used

- M Bending Moment (Kilonewton Meter)
- Me Equivalent Bending Moment (Kilonewton Meter)
- T Torsion (Megapascal)
- Te Equivalent Torque (Kilonewton Meter)
- θ Theta (Degree)
- σ_b Bending Stress (Megapascal)
- σ_x Stress along x Direction (Megapascal)
- σ_v Stress along y Direction (Megapascal)
- σ_{θ} Normal Stress on Oblique Plane (Megapascal)
- T Shear Stress (Megapascal)
- Tmax Maximum Shear Stress (Megapascal)
- T_{XV} Shear Stress xy (Megapascal)
- τ_θ Shear Stress on Oblique Plane (Megapascal)
- Φ Diameter of Circular Shaft (Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: acos, acos(Number)
 Inverse trigonometric cosine function
- Function: arccos, arccos(Number)
 Inverse trigonometric cosine function
- Function: arctan, arctan(Number)

 Inverse trigonometric tangent function
- Function: arsin, arsin(Number)
 Inverse trigonometric sine function
- Function: asin, asin(Number)
 Inverse trigonometric sine function
- Function: atan, atan(Number)
 Inverse trigonometric tangent function
- Function: cos, cos(Angle)

 Trigonometric cosine function
- Function: ctan, ctan(Angle)

 Trigonometric cotangent function
- Function: sin, sin(Angle)

 Trigonometric sine function
- Function: tan, tan(Angle)

 Trigonometric tangent function
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion
- Measurement: Torque in Kilonewton Meter (kN*m)

 Torque Unit Conversion
- Measurement: Moment of Force in Kilonewton Meter (kN*m)

 Moment of Force Unit Conversion
- Measurement: Stress in Megapascal (MPa)
 Stress Unit Conversion

Check other formula lists

- Mohr's Circle of Stresses Formulas
- Beam Moments Formulas
- Bending Stress Formulas
- Combined Axial and Bending Loads Formulas
- Elastic Stability of Columns Formulas
- Principal Stress Formulas
- Slope and Deflection Formulas
- Strain Energy Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/21/2023 | 1:39:17 PM UTC

Please leave your feedback here...

