unitsconverters.com

Principal Stress Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 32 Principal Stress Formulas

Principal Stress

Combined Bending and Torsion Condition

1) Angle of Twist in Combined Bending and Torsion
$\mathrm{fx} \theta=\frac{\arctan \left(\frac{\mathrm{T}}{\mathrm{M}}\right)}{2}$
ex $29.99995^{\circ}=\frac{\arctan \left(\frac{0.116913 \mathrm{MPa}}{67.5 \mathrm{kN} \mathrm{N}^{\mathrm{m}}}\right)}{2}$
2) Angle of Twist in Combined Bending and Torsional Stress
$\theta=0.5 \cdot \arctan \left(2 \cdot \frac{\mathrm{~T}}{\sigma_{\mathrm{b}}}\right)$
$\mathrm{ex} 8.995819^{\circ}=0.5 \cdot \arctan \left(2 \cdot \frac{0.116913 \mathrm{MPa}}{0.72 \mathrm{MPa}}\right)$
3) Bending Moment given Combined Bending and Torsion
$f \mathrm{x} M=\frac{\mathrm{T}}{\tan (2 \cdot \theta)}$
ex $67.49975 \mathrm{kN}^{*} \mathrm{~m}=\frac{0.116913 \mathrm{MPa}}{\tan \left(2 \cdot 30^{\circ}\right)}$
4) Bending Stress given Combined Bending and Torsional Stress
$f \mathbf{f x} \sigma_{\mathrm{b}}=\frac{\mathrm{T}}{\frac{\tan (2 \cdot \theta)}{2}}$
ex $0.135 \mathrm{MPa}=\frac{0.116913 \mathrm{MPa}}{\frac{\tan \left(2 \cdot 30^{\circ}\right)}{2}}$
5) Torsional Moment when Member is subjected to both Bending and Torsion
$f \mathrm{fx}=\mathrm{M} \cdot(\tan (2 \cdot \theta))$
ex $0.116913 \mathrm{MPa}=67.5 \mathrm{kN}^{*} \mathrm{~m} \cdot\left(\tan \left(2 \cdot 30^{\circ}\right)\right)$
6) Torsional Stress given Combined Bending and Torsional Stress
$f_{\mathrm{x}} \mathrm{T}=\left(\frac{\tan (2 \cdot \theta)}{2}\right) \cdot \sigma_{\mathrm{b}}$
ex $0.623538 \mathrm{MPa}=\left(\frac{\tan \left(2 \cdot 30^{\circ}\right)}{2}\right) \cdot 0.72 \mathrm{MPa}$

Complementary Induced Stress 둔

7) Angle of Oblique Plane using Normal Stress when Complementary Shear Stresses Induced
$f \mathbf{f x} \theta=\frac{a \sin \left(\frac{\sigma_{\theta}}{\tau}\right)}{2}$
ex $44.4537^{\circ}=\frac{a \sin \left(\frac{54.99 \mathrm{MPa}}{55 \mathrm{MPa}}\right)}{2}$
8) Angle of Oblique Plane using Shear Stress when Complementary Shear Stresses Induced
$\mathbf{f x} \theta=0.5 \cdot \arccos \left(\frac{\tau_{\theta}}{\tau}\right)$
ex $29.61052^{\circ}=0.5 \cdot \arccos \left(\frac{28.145 \mathrm{MPa}}{55 \mathrm{MPa}}\right)$
9) Normal Stress when Complementary Shear Stresses Induced
$\mathrm{fx} \sigma_{\theta}=\tau \cdot \sin (2 \cdot \theta)$
ex $47.6314 \mathrm{MPa}=55 \mathrm{MPa} \cdot \sin \left(2 \cdot 30^{\circ}\right)$
10) Shear Stress along Oblique Plane when Complementary Shear Stresses Induced
$f \mathbf{x} \tau_{\theta}=\tau \cdot \cos (2 \cdot \theta)$
ex $27.5 \mathrm{MPa}=55 \mathrm{MPa} \cdot \cos \left(2 \cdot 30^{\circ}\right)$
11) Shear Stress due to Effect of Complementary Shear Stresses and Shear Stress in Oblique Plane $\boxed{\square}$
$\mathrm{fx} \tau=\frac{\tau_{\theta}}{\cos (2 \cdot \theta)}$
ex $56.29 \mathrm{MPa}=\frac{28.145 \mathrm{MPa}}{\cos \left(2 \cdot 30^{\circ}\right)}$
12) Shear Stress due to Induced Complementary Shear Stresses and Normal Stress on Oblique Plane
$f \mathbf{x} \tau=\frac{\sigma_{\theta}}{\sin (2 \cdot \theta)}$
ex $63.49698 \mathrm{MPa}=\frac{54.99 \mathrm{MPa}}{\sin \left(2 \cdot 30^{\circ}\right)}$

Equivalent Bending Moment \& Torque ©

13) Bending Stress of Circular Shaft given Equivalent Bending Moment
$f \mathrm{x} \sigma_{\mathrm{b}}=\frac{32 \cdot \mathrm{M}_{\mathrm{e}}}{\pi \cdot\left(\Phi^{3}\right)}$
$\mathbf{e x} 0.724332 \mathrm{MPa}=\frac{32 \cdot 30 \mathrm{kN}{ }^{*} \mathrm{~m}}{\pi \cdot\left((750 \mathrm{~mm})^{3}\right)}$
14) Diameter of Circular Shaft for Equivalent Torque and Maximum Shear Stress
$f \mathbf{f x} \Phi\left(\frac{16 \cdot \mathrm{~T}_{\mathrm{e}}}{\pi \cdot\left(\tau_{\max }\right)}\right)^{\frac{1}{3}}$
ex $157.1413 \mathrm{~mm}=\left(\frac{16 \cdot 32 \mathrm{kN}^{*} \mathrm{~m}}{\pi \cdot(42 \mathrm{MPa})}\right)^{\frac{1}{3}}$
15) Diameter of Circular Shaft given Equivalent Bending Stress
$f \mathrm{fx} \Phi=\left(\frac{32 \cdot \mathrm{M}_{\mathrm{e}}}{\pi \cdot\left(\sigma_{\mathrm{b}}\right)}\right)^{\frac{1}{3}}$
ex $751.5011 \mathrm{~mm}=\left(\frac{32 \cdot 30 \mathrm{kN}^{*} \mathrm{~m}}{\pi \cdot(0.72 \mathrm{MPa})}\right)^{\frac{1}{3}}$
16) Equivalent Bending Moment of Circular Shaft
$\mathrm{fx} \mathrm{M}_{\mathrm{e}}=\frac{\sigma_{\mathrm{b}}}{\frac{32}{\pi \cdot\left(\Phi^{3}\right)}}$
ex $29.82059 \mathrm{kN}^{*} \mathrm{~m}=\frac{0.72 \mathrm{MPa}}{\frac{32}{\pi \cdot\left((750 \mathrm{~mm})^{3}\right)}}$
17) Equivalent Torque given Maximum Shear Stress
$\mathrm{T}_{\mathrm{e}}=\frac{\tau_{\max }}{\frac{16}{\pi \cdot\left(\Phi^{3}\right)}}$
ex $3479.068 \mathrm{kN}^{*} \mathrm{~m}=\frac{42 \mathrm{MPa}}{\frac{16}{\pi \cdot\left((750 \mathrm{~mm})^{3}\right)}}$
18) Location of Principal Planes
$\mathrm{fx} \theta=\left(\left(\left(\frac{1}{2}\right) \cdot a \tan \left(\frac{2 \cdot \tau_{\mathrm{xy}}}{\sigma_{\mathrm{y}}-\sigma_{\mathrm{x}}}\right)\right)\right)$
ex $6.245735^{\circ}=\left(\left(\left(\frac{1}{2}\right) \cdot a \tan \left(\frac{2 \cdot 7.2 \mathrm{MPa}}{110 \mathrm{MPa}-45 \mathrm{MPa}}\right)\right)\right)$
19) Maximum Shear Stress due to Equivalent Torque
$\mathrm{fx} \tau_{\max }=\frac{16 \cdot \mathrm{~T}_{\mathrm{e}}}{\pi \cdot\left(\Phi^{3}\right)}$
ex $0.38631 \mathrm{MPa}=\frac{16 \cdot 32 \mathrm{kN}^{*} \mathrm{~m}}{\pi \cdot\left((750 \mathrm{~mm})^{3}\right)}$

Maximum Shear Stress on the Biaxial Loading

20) Maximum Shear Stress when Member is Subjected to like Principal Stresses
$f \mathrm{x} \tau_{\max }=\frac{1}{2} \cdot\left(\sigma_{\mathrm{y}}-\sigma_{\mathrm{x}}\right)$
ex $32.5 \mathrm{MPa}=\frac{1}{2} \cdot(110 \mathrm{MPa}-45 \mathrm{MPa})$
21) Stress along X-Axis when Member is Subjected to like Principal Stresses and Max Shear Stress
$f \mathbf{f x} \sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}-\left(2 \cdot \tau_{\max }\right)$
ex $26 \mathrm{MPa}=110 \mathrm{MPa}-(2 \cdot 42 \mathrm{MPa})$
22) Stress along Y-Axis when Member is Subjected to like Principal Stresses and Max Shear Stress
$\mathrm{fx} \sigma_{\mathrm{y}}=2 \cdot \tau_{\text {max }}+\sigma_{\mathrm{x}}$
ex $129 \mathrm{MPa}=2 \cdot 42 \mathrm{MPa}+45 \mathrm{MPa}$

Stresses in Bi-Axial Loading

23) Normal Stress Induced in Oblique Plane due to Biaxial Loading
$\mathrm{fx}_{\mathrm{x}} \sigma_{\theta}=\left(\frac{1}{2} \cdot\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right)\right)+\left(\frac{1}{2} \cdot\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) \cdot(\cos (2 \cdot \theta))\right)+\left(\tau_{\mathrm{xy}} \cdot \sin (2 \cdot \theta)\right)$
ex
$67.48538 \mathrm{MPa}=\left(\frac{1}{2} \cdot(45 \mathrm{MPa}+110 \mathrm{MPa})\right)+\left(\frac{1}{2} \cdot(45 \mathrm{MPa}-110 \mathrm{MPa}) \cdot\left(\cos \left(2 \cdot 30^{\circ}\right)\right)\right)+(7.2 \mathrm{MPa} \cdot \sin (:$
24) Shear Stress Induced in Oblique Plane due to Biaxial Loading
fx $\tau_{\theta}=-\left(\frac{1}{2} \cdot\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) \cdot \sin (2 \cdot \theta)\right)+\left(\tau_{\mathrm{xy}} \cdot \cos (2 \cdot \theta)\right)$
ex $31.74583 \mathrm{MPa}=-\left(\frac{1}{2} \cdot(45 \mathrm{MPa}-110 \mathrm{MPa}) \cdot \sin \left(2 \cdot 30^{\circ}\right)\right)+\left(7.2 \mathrm{MPa} \cdot \cos \left(2 \cdot 30^{\circ}\right)\right)$
25) Stress along X- Direction with known Shear Stress in Bi-Axial Loading
$\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}-\left(\frac{\tau_{\theta} \cdot 2}{\sin (2 \cdot \theta)}\right)$
ex $45.00191 \mathrm{MPa}=110 \mathrm{MPa}-\left(\frac{28.145 \mathrm{MPa} \cdot 2}{\sin \left(2 \cdot 30^{\circ}\right)}\right)$
26) Stress along Y- Direction using Shear Stress in Bi-Axial Loading
$f \mathbf{x} \sigma_{\mathrm{y}}=\sigma_{\mathrm{x}}+\left(\frac{\tau_{\theta} \cdot 2}{\sin (2 \cdot \theta)}\right)$
ex $109.9981 \mathrm{MPa}=45 \mathrm{MPa}+\left(\frac{28.145 \mathrm{MPa} \cdot 2}{\sin \left(2 \cdot 30^{\circ}\right)}\right)$

Stresses of Members Subjected to Axial Loading

27) Angle of Oblique Plane using Shear Stress and Axial Load
$f \mathbf{f x} \theta=\frac{\operatorname{ar} \sin \left(\left(\frac{2 \cdot \tau_{\theta}}{\sigma_{\mathrm{y}}}\right)\right)}{2}$
ex $15.38948^{\circ}=\frac{a r \sin \left(\left(\frac{2 \cdot 28.145 \mathrm{MPa}}{110 \mathrm{MPa}}\right)\right)}{2}$
28) Angle of Oblique plane when Member Subjected to Axial Loading
$f x \theta=\frac{a \cos \left(\frac{\sigma_{\theta}}{\sigma_{y}}\right)}{2}$
ex $30.00301^{\circ}=\frac{a \cos \left(\frac{54.99 \mathrm{MPa}}{110 \mathrm{MPa}}\right)}{2}$
29) Normal Stress when Member Subjected to Axial Load
$\mathrm{fx} \sigma_{\theta}=\sigma_{\mathrm{y}} \cdot \cos (2 \cdot \theta)$
ex $55 \mathrm{MPa}=110 \mathrm{MPa} \cdot \cos \left(2 \cdot 30^{\circ}\right)$
30) Shear Stress when Member Subjected to Axial Load
$f \mathbf{f} \tau_{\theta}=0.5 \cdot \sigma_{\mathrm{y}} \cdot \sin (2 \cdot \theta)$
ex $47.6314 \mathrm{MPa}=0.5 \cdot 110 \mathrm{MPa} \cdot \sin \left(2 \cdot 30^{\circ}\right)$
31) Stress along Y-direction given Shear Stress in Member subjected to Axial Load
$f \mathrm{x} \sigma_{\mathrm{y}}=\frac{\tau_{\theta}}{0.5 \cdot \sin (2 \cdot \theta)}$
ex $64.99809 \mathrm{MPa}=\frac{28.145 \mathrm{MPa}}{0.5 \cdot \sin \left(2 \cdot 30^{\circ}\right)}$
32) Stress along Y-direction when Member Subjected to Axial Load
$\mathrm{fx} \sigma_{\mathrm{y}}=\frac{\sigma_{\theta}}{\cos (2 \cdot \theta)}$
ex $109.98 \mathrm{MPa}=\frac{54.99 \mathrm{MPa}}{\cos \left(2 \cdot 30^{\circ}\right)}$

Variables Used

- M Bending Moment (Kilonewton Meter)
- $\mathbf{M}_{\mathbf{e}}$ Equivalent Bending Moment (Kilonewton Meter)
- T Torsion (Megapascal)
- T_{e} Equivalent Torque (Kilonewton Meter)
- $\boldsymbol{\theta}$ Theta (Degree)
- σ_{b} Bending Stress (Megapascal)
- $\boldsymbol{\sigma}_{\mathbf{x}}$ Stress along x Direction (Megapascal)
- $\sigma_{\mathbf{y}}$ Stress along y Direction (Megapascal)
- σ_{θ} Normal Stress on Oblique Plane (Megapascal)
- t Shear Stress (Megapascal)
- $\mathbf{T}_{\text {max }}$ Maximum Shear Stress (Megapascal)
- $\mathbf{T}_{\mathbf{x y}}$ Shear Stress xy (Megapascal)
- $\boldsymbol{T}_{\boldsymbol{\theta}}$ Shear Stress on Oblique Plane (Megapascal)
- Ф Diameter of Circular Shaft (Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: acos, acos(Number)

Inverse trigonometric cosine function

- Function: arccos, arccos(Number)

Inverse trigonometric cosine function

- Function: arctan, arctan(Number)

Inverse trigonometric tangent function

- Function: arsin, arsin(Number) Inverse trigonometric sine function
- Function: asin, asin(Number) Inverse trigonometric sine function
- Function: atan, atan(Number) Inverse trigonometric tangent function
- Function: cos, $\cos ($ Angle)

Trigonometric cosine function

- Function: ctan, ctan(Angle)

Trigonometric cotangent function

- Function: sin, sin(Angle)

Trigonometric sine function

- Function: $\boldsymbol{t a n}, \tan ($ Angle)

Trigonometric tangent function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Torque in Kilonewton Meter (kN*m)

Torque Unit Conversion

- Measurement: Moment of Force in Kilonewton Meter (kN*m)

Moment of Force Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Mohr's Circle of Stresses Formulas
- Beam Moments Formulas
- Bending Stress Formulas
- Combined Axial and Bending Loads Formulas
- Elastic Stability of Columns Formulas
- Principal Stress Formulas
- Slope and Deflection Formulas
- Strain Energy Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

