
calculatoratoz.com

unitsconverters.com

Nearshore Currents Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Nearshore Currents Formulas

Nearshore Currents

1) Oscillatory Flow due to Infragravity Waves
$f \mathrm{x} \mathrm{u}_{\mathrm{i}}=\mathrm{u}-\mathrm{u}_{\mathrm{w}}-\mathrm{u}_{\mathrm{t}}-\mathrm{u}_{\mathrm{o}}-\mathrm{u}_{\mathrm{a}}$
ex $8 \mathrm{~m} / \mathrm{s}=45 \mathrm{~m} / \mathrm{s}-16 \mathrm{~m} / \mathrm{s}-12 \mathrm{~m} / \mathrm{s}-3 \mathrm{~m} / \mathrm{s}-6 \mathrm{~m} / \mathrm{s}$
2) Oscillatory Flow due to Wind Waves
$f \mathrm{x} \mathrm{u}_{\mathrm{o}}=\mathrm{u}-\mathrm{u}_{\mathrm{t}}-\mathrm{u}_{\mathrm{w}}-\mathrm{u}_{\mathrm{i}}-\mathrm{u}_{\mathrm{a}}$
ex $3 \mathrm{~m} / \mathrm{s}=45 \mathrm{~m} / \mathrm{s}-12 \mathrm{~m} / \mathrm{s}-16 \mathrm{~m} / \mathrm{s}-8 \mathrm{~m} / \mathrm{s}-6 \mathrm{~m} / \mathrm{s}$
3) Steady Current driven by Breaking Waves
$f \mathrm{f} \mathrm{u}_{\mathrm{w}}=\mathrm{u}-\mathrm{u}_{\mathrm{t}}-\mathrm{u}_{\mathrm{i}}-\mathrm{u}_{\mathrm{o}}-\mathrm{u}_{\mathrm{a}}$
ex $16 \mathrm{~m} / \mathrm{s}=45 \mathrm{~m} / \mathrm{s}-12 \mathrm{~m} / \mathrm{s}-8 \mathrm{~m} / \mathrm{s}-3 \mathrm{~m} / \mathrm{s}-6 \mathrm{~m} / \mathrm{s}$
4) Tidal Current given Total Current in Surf Zone
$f \mathbf{x} u_{t}=u-\left(u_{w}+u_{a}+u_{i}+u_{o}\right)$
Open Calculator ك
ex $12 \mathrm{~m} / \mathrm{s}=45 \mathrm{~m} / \mathrm{s}-(16 \mathrm{~m} / \mathrm{s}+6 \mathrm{~m} / \mathrm{s}+8 \mathrm{~m} / \mathrm{s}+3 \mathrm{~m} / \mathrm{s})$
5) Total Current in Surf Zone
$f \mathbf{x} u=u_{\mathrm{a}}+\mathrm{u}_{\mathrm{i}}+\mathrm{u}_{\mathrm{o}}+\mathrm{u}_{\mathrm{t}}+\mathrm{u}_{\mathrm{w}}$
ex $45 \mathrm{~m} / \mathrm{s}=6 \mathrm{~m} / \mathrm{s}+8 \mathrm{~m} / \mathrm{s}+3 \mathrm{~m} / \mathrm{s}+12 \mathrm{~m} / \mathrm{s}+16 \mathrm{~m} / \mathrm{s}$
6) Wind Driven Current given Total Current in Surf Zone
$f \mathrm{x} \mathrm{u}_{\mathrm{a}}=\mathrm{u}-\mathrm{u}_{\mathrm{w}}-\mathrm{u}_{\mathrm{t}}-\mathrm{u}_{\mathrm{o}}-\mathrm{u}_{\mathrm{i}}$
ex $6 \mathrm{~m} / \mathrm{s}=45 \mathrm{~m} / \mathrm{s}-16 \mathrm{~m} / \mathrm{s}-12 \mathrm{~m} / \mathrm{s}-3 \mathrm{~m} / \mathrm{s}-8 \mathrm{~m} / \mathrm{s}$

Longshore Current

7) Beach Slope Modified for Wave Setup
$f \mathrm{x} \beta^{*}=a \tan \left(\frac{\tan (\beta)}{1+\left(3 \cdot \frac{\gamma_{\mathrm{b}}^{2}}{8}\right)}\right)$
ex $0.144531=a \tan \left(\frac{\tan (0.15)}{1+\left(3 \cdot \frac{(0.32)^{2}}{8}\right)}\right)$
8) Longshore Current at Mid-Surf Zone
$f \mathrm{x} \mathrm{V}_{\mathrm{mid}}=1.17 \cdot \sqrt{[\mathrm{~g}] \cdot \mathrm{H}_{\mathrm{rms}} \cdot \sin (\alpha) \cdot \cos (\alpha)}$
Open Calculator
ex $1.098031 \mathrm{~m} / \mathrm{s}=1.17 \cdot \sqrt{[\mathrm{~g}] \cdot 0.479 \mathrm{~m}} \cdot \sin \left(60^{\circ}\right) \cdot \cos \left(60^{\circ}\right)$
9) Longshore Current Speed

$$
\mathrm{V}=\left(5 \cdot \frac{\pi}{16}\right) \cdot \tan \left(\beta^{*}\right) \cdot \gamma_{\mathrm{b}} \cdot \sqrt{[\mathrm{~g}] \cdot \mathrm{D}} \cdot \sin (\alpha) \cdot \frac{\cos (\alpha)}{\mathrm{C}_{\mathrm{f}}}
$$

ex

$41.57468 \mathrm{~m} / \mathrm{s}=\left(5 \cdot \frac{\pi}{16}\right) \cdot \tan (0.14) \cdot 0.32 \cdot \sqrt{[\mathrm{~g}] \cdot 11.99 \mathrm{~m}} \cdot \sin \left(60^{\circ}\right) \cdot \frac{\cos \left(60^{\circ}\right)}{0.005}$
10) Radiation Stress Component
$f \mathrm{fx} \mathrm{S}_{\mathrm{xy}}=\left(\frac{\mathrm{n}}{8}\right) \cdot \rho \cdot[\mathrm{g}] \cdot\left(\mathrm{H}^{2}\right) \cdot \cos (\alpha) \cdot \sin (\alpha)$
ex $13.48941=\left(\frac{0.05}{8}\right) \cdot 997 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}] \cdot\left((0.714 \mathrm{~m})^{2}\right) \cdot \cos \left(60^{\circ}\right) \cdot \sin \left(60^{\circ}\right)$
11) Ratio of Wave Group Speed and Phase Speed
$f \mathrm{x} \quad \mathrm{n}=\frac{\mathrm{S}_{\mathrm{xy}} \cdot 8}{\rho \cdot[\mathrm{~g}] \cdot \mathrm{H}^{2} \cdot \cos (\alpha) \cdot \sin (\alpha)}$
ex $0.055599=\frac{15 \cdot 8}{997 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}] \cdot(0.714 \mathrm{~m})^{2} \cdot \cos \left(60^{\circ}\right) \cdot \sin \left(60^{\circ}\right)}$

12) Root Mean Square Wave Height at Breaking given Longshore Current at MidSurf Zone

$f x \mathrm{H}_{\mathrm{rms}}=\frac{\left(\frac{\mathrm{V}_{\mathrm{mid}}}{1.17 \cdot \sin (\alpha) \cdot \cos (\alpha)}\right)^{0.5}}{[\mathrm{~g}]}$
ex $0.149572 \mathrm{~m}=\frac{\left(\frac{1.09 \mathrm{~m} / \mathrm{s}}{1.17 \cdot \sin \left(60^{\circ}\right) \cdot \cos \left(60^{\circ}\right)}\right)^{0.5}}{[\mathrm{~g}]}$
13) Wave Height given Radiation Stress Component
$f x H=\sqrt{\frac{S_{x y} \cdot 8}{\rho} \cdot[g] \cdot \cos (\alpha) \cdot \sin (\alpha)}$
ex $0.714914 \mathrm{~m}=\sqrt{\frac{15 \cdot 8}{997 \mathrm{~kg} / \mathrm{m}^{3}} \cdot[\mathrm{~g}] \cdot \cos \left(60^{\circ}\right) \cdot \sin \left(60^{\circ}\right)}$

Variables Used

- C_{f} Bottom Friction Coefficient
- D Water Depth (Meter)
- H Wave Height (Meter)
- $\mathrm{H}_{\text {rms }}$ Root Mean Square Wave Height (Meter)
- \mathbf{n} Ratio of Wave Group Speed and Phase Speed
- $S_{x y}$ Radiation Stress Component
- u Total Current in the Surf Zone (Meter per Second)
- $\mathbf{u}_{\mathbf{a}}$ Wind Driven Current (Meter per Second)
- $\mathbf{u}_{\mathbf{i}}$ Oscillatory Flow due to Infragravity Waves (Meter per Second)
- $\mathbf{u}_{\mathbf{o}}$ Oscillatory Flow due to Wind Waves (Meter per Second)
- $\mathbf{u}_{\mathbf{t}}$ Tidal Current (Meter per Second)
- $\mathbf{u}_{\mathbf{w}}$ Steady Current driven by Breaking Waves (Meter per Second)
- V Longshore Current Speed (Meter per Second)
- $\mathbf{V}_{\text {mid }}$ Longshore Current at the Mid-Surf Zone (Meter per Second)
- α Wave Crest Angle (Degree)
- $\boldsymbol{\beta}$ Beach Slope
- $\boldsymbol{\beta}^{*}$ Modified Beach Slope
- $\mathbf{Y b}_{\mathbf{b}}$ Breaker Depth Index
- $\boldsymbol{\rho}$ Mass Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: atan, atan(Number)

Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: $\boldsymbol{\operatorname { s i n }}, \sin ($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: $\boldsymbol{\operatorname { t a n }}, \tan ($ Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$ Angle Unit Conversion
- Measurement: Mass Concentration in Kilogram per Cubic Meter ($\mathrm{kg} / \mathrm{m}^{3}$) Mass Concentration Unit Conversion

Check other formula lists

- Nearshore Currents Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

