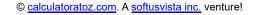
Nearshore Currents Formulas...

Nearshore Currents Formulas

Calculators!

Examples!

Conversions!


Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!


Please leave your feedback here...

List of 13 Nearshore Currents Formulas

Nearshore Currents Formulas...

6) Wind Driven Current given Total Current in Surf Zone 🕑

fx
$$\mathbf{u}_{\mathrm{a}} = \mathbf{u} - \mathbf{u}_{\mathrm{w}} - \mathbf{u}_{\mathrm{t}} - \mathbf{u}_{\mathrm{o}} - \mathbf{u}_{\mathrm{i}}$$

$$6m/s = 45m/s - 16m/s - 12m/s - 3m/s - 8m/s$$

Longshore Current 🕑

7) Beach Slope Modified for Wave Setup

fx
$$egin{aligned} eta^* &= a an \left(rac{ an(eta)}{1 + \left(3 \cdot rac{\gamma_{
m b}^2}{8}
ight)}
ight) \end{aligned}$$

ex
$$0.144531 = a an \left(rac{ an(0.15)}{1 + \left(3 \cdot rac{(0.32)^2}{8}
ight)}
ight)$$

8) Longshore Current at Mid-Surf Zone 🕑

fx
$$V_{
m mid} = 1.17 \cdot \sqrt{[{
m g}] \cdot {
m H}_{
m rms}} \cdot \sin(lpha) \cdot \cos(lpha)$$

$$\overbrace{\textbf{ex}} 1.098031 \text{m/s} = 1.17 \cdot \sqrt{[\text{g}] \cdot 0.479 \text{m}} \cdot \sin(60^\circ) \cdot \cos(60^\circ)$$

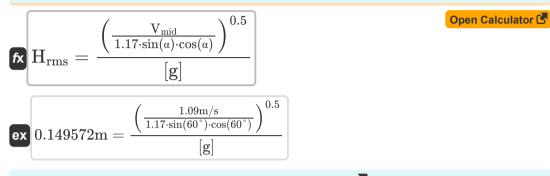
Open Calculator 🕑

Open Calculator 🖸

Open Calculator 🕑

Nearshore Currents Formulas...

9) Longshore Current Speed 🕑


fx

Open Calculator 🕑

$$V = \left(5 \cdot \frac{\pi}{16}\right) \cdot \tan\left(\beta^{*}\right) \cdot \gamma_{b} \cdot \sqrt{[g] \cdot D} \cdot \sin(\alpha) \cdot \frac{\cos(\alpha)}{C_{f}}$$
ex
$$41.57468m/s = \left(5 \cdot \frac{\pi}{16}\right) \cdot \tan(0.14) \cdot 0.32 \cdot \sqrt{[g] \cdot 11.99m} \cdot \sin(60^{\circ}) \cdot \frac{\cos(60^{\circ})}{0.005}$$
10) Radiation Stress Component **C**
fx
$$S_{xy} = \left(\frac{n}{8}\right) \cdot \rho \cdot [g] \cdot (H^{2}) \cdot \cos(\alpha) \cdot \sin(\alpha)$$
fx
$$13.48941 = \left(\frac{0.05}{8}\right) \cdot 997kg/m^{3} \cdot [g] \cdot \left((0.714m)^{2}\right) \cdot \cos(60^{\circ}) \cdot \sin(60^{\circ})$$
11) Ratio of Wave Group Speed and Phase Speed **C**
fx
$$n = \frac{S_{xy} \cdot 8}{\rho \cdot [g] \cdot H^{2} \cdot \cos(\alpha) \cdot \sin(\alpha)}$$
Open Calculator **C**
fx
$$0.055599 = \frac{15 \cdot 8}{997kg/m^{3} \cdot [g] \cdot (0.714m)^{2} \cdot \cos(60^{\circ}) \cdot \sin(60^{\circ})}$$

12) Root Mean Square Wave Height at Breaking given Longshore Current at Mid-Surf Zone

13) Wave Height given Radiation Stress Component 🕑

fx
$$H = \sqrt{\frac{S_{xy} \cdot 8}{\rho} \cdot [g] \cdot \cos(\alpha) \cdot \sin(\alpha)}$$
ex
$$0.714914m = \sqrt{\frac{15 \cdot 8}{997 \text{kg/m}^3} \cdot [g] \cdot \cos(60^\circ) \cdot \sin(60^\circ)}$$

Open Calculator 🕑

Variables Used

- C_f Bottom Friction Coefficient
- **D** Water Depth (Meter)
- H Wave Height (Meter)
- Hrms Root Mean Square Wave Height (Meter)
- **n** Ratio of Wave Group Speed and Phase Speed
- S_{XV} Radiation Stress Component
- U Total Current in the Surf Zone (Meter per Second)
- **u**_a Wind Driven Current (Meter per Second)
- Ui Oscillatory Flow due to Infragravity Waves (Meter per Second)
- Uo Oscillatory Flow due to Wind Waves (Meter per Second)
- **U**t Tidal Current (Meter per Second)
- U_w Steady Current driven by Breaking Waves (Meter per Second)
- V Longshore Current Speed (Meter per Second)
- V_{mid} Longshore Current at the Mid-Surf Zone (Meter per Second)
- α Wave Crest Angle (Degree)
- β Beach Slope
- β^* Modified Beach Slope
- γ_b Breaker Depth Index
- ρ Mass Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: atan, atan(Number) Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Mass Concentration in Kilogram per Cubic Meter (kg/m³) Mass Concentration Unit Conversion

Check other formula lists

Nearshore Currents Formulas C

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

4/9/2024 | 10:07:19 AM UTC

Please leave your feedback here...

