Shear Stress Formulas

Calculators!

Examples!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 42 Shear Stress Formulas

Shear Stress

Horizontal Shear Flow ©

1) Area given Horizontal Shear Flow
$f \mathrm{~A}=\frac{\mathrm{I} \cdot \tau}{\mathrm{V} \cdot \mathrm{y}}$
ex $3.193548 \mathrm{~m}^{2}=\frac{36000000 \mathrm{~mm}^{4} \cdot 55 \mathrm{MPa}}{24.8 \mathrm{kN} \cdot 25 \mathrm{~mm}}$
2) Distance from Centroid given Horizontal Shear Flow
$f \mathbf{x} y=\frac{I \cdot \tau}{V \cdot A}$
ex $24.9496 \mathrm{~mm}=\frac{36000000 \mathrm{~mm}^{4} \cdot 55 \mathrm{MPa}}{24.8 \mathrm{kN} \cdot 3.2 \mathrm{~m}^{2}}$
3) Horizontal Shear Flow
$\mathrm{f} x=\frac{\mathrm{V} \cdot \mathrm{A} \cdot \mathrm{y}}{\mathrm{I}}$
ex $55.11111 \mathrm{MPa}=\frac{24.8 \mathrm{kN} \cdot 3.2 \mathrm{~m}^{2} \cdot 25 \mathrm{~mm}}{36000000 \mathrm{~mm}^{4}}$
4) Moment of Inertia given Horizontal Shear Flow
$\mathrm{x}=\frac{\mathrm{V} \cdot \mathrm{A} \cdot \mathrm{y}}{\tau}$
ex $3.6 \mathrm{E}^{\wedge} 7 \mathrm{~mm}^{4}=\frac{24.8 \mathrm{kN} \cdot 3.2 \mathrm{~m}^{2} \cdot 25 \mathrm{~mm}}{55 \mathrm{MPa}}$
5) Shear given Horizontal Shear Flow
$f \times V=\frac{I \cdot \tau}{y \cdot A}$
ex $24.75 \mathrm{kN}=\frac{36000000 \mathrm{~mm}^{4} \cdot 55 \mathrm{MPa}}{25 \mathrm{~mm} \cdot 3.2 \mathrm{~m}^{2}}$

Longitudinal Shear Stress

6) Area given Longitudinal Shear Stress
$f \mathrm{f} A=\frac{\tau \cdot \mathrm{I} \cdot \mathrm{b}}{\mathrm{V} \cdot \mathrm{y}}$
ex $0.958065 \mathrm{~m}^{2}=\frac{55 \mathrm{MPa} \cdot 36000000 \mathrm{~mm}^{4} \cdot 300 \mathrm{~mm}}{24.8 \mathrm{kN} \cdot 25 \mathrm{~mm}}$
7) Breadth for given Longitudinal Shear Stress
$f \mathrm{f}=\frac{\mathrm{V} \cdot \mathrm{A} \cdot \mathrm{y}}{\mathrm{I} \cdot \tau}$
ex $1002.02 \mathrm{~mm}=\frac{24.8 \mathrm{kN} \cdot 3.2 \mathrm{~m}^{2} \cdot 25 \mathrm{~mm}}{36000000 \mathrm{~mm}^{4} \cdot 55 \mathrm{MPa}}$
8) Maximum Distance from Neutral Axis to Extreme Fiber given Longitudinal Shear Stress
$f x y=\frac{\tau \cdot I \cdot b}{V \cdot A}$
ex $7.484879 \mathrm{~mm}=\frac{55 \mathrm{MPa} \cdot 36000000 \mathrm{~mm}^{4} \cdot 300 \mathrm{~mm}}{24.8 \mathrm{kN} \cdot 3.2 \mathrm{~m}^{2}}$
9) Moment of Inertia given Longitudinal Shear Stress
$f \mathrm{x} I=\frac{\mathrm{V} \cdot \mathrm{A} \cdot \mathrm{y}}{\tau \cdot \mathrm{b}}$
ex $0.00012 \mathrm{~mm}^{4}=\frac{24.8 \mathrm{kN} \cdot 3.2 \mathrm{~m}^{2} \cdot 25 \mathrm{~mm}}{55 \mathrm{MPa} \cdot 300 \mathrm{~mm}}$

I－Beam［⿶凵

10）Breadth of Flange Given Longitudinal Shear Stress in Web for I beam

凹

$f \mathrm{f} \mathrm{b}_{\mathrm{f}}=\frac{8 \cdot \mathrm{I} \cdot \tau \cdot \mathrm{b}_{\mathrm{w}}}{\mathrm{V} \cdot\left(\mathrm{D}^{2}-\mathrm{d}_{\mathrm{w}}^{2}\right)}$
$39.93339 \mathrm{~mm}=\frac{8 \cdot 36000000 \mathrm{~mm}^{4} \cdot 55 \mathrm{MPa} \cdot .040 \mathrm{~m}}{24.8 \mathrm{kN} \cdot\left((800 \mathrm{~mm})^{2}-(15 \mathrm{~mm})^{2}\right)}$
11）Breadth of Web given Longitudinal Shear Stress in Web for I beam
$\mathrm{b}_{\mathrm{w}}=\left(\frac{\mathrm{b}_{\mathrm{f}} \cdot \mathrm{V}}{8 \cdot \tau \cdot \mathrm{I}}\right) \cdot\left(\mathrm{D}^{2}-\mathrm{d}_{\mathrm{w}}^{2}\right)$
Open Calculator
ex $0.250417 \mathrm{~m}=\left(\frac{250 \mathrm{~mm} \cdot 24.8 \mathrm{kN}}{8 \cdot 55 \mathrm{MPa} \cdot 36000000 \mathrm{~mm}^{4}}\right) \cdot\left((800 \mathrm{~mm})^{2}-(15 \mathrm{~mm})^{2}\right)$
12）Longitudinal Shear Stress in Flange at Lower Depth of I beam
$f \mathbf{x} \tau=\left(\frac{V}{8 \cdot I}\right) \cdot\left(D^{2}-d_{w}^{2}\right)$
ex $55.09174 \mathrm{MPa}=\left(\frac{24.8 \mathrm{kN}}{8 \cdot 36000000 \mathrm{~mm}^{4}}\right) \cdot\left((800 \mathrm{~mm})^{2}-(15 \mathrm{~mm})^{2}\right)$
13）Longitudinal Shear Stress in Web for I beam
$f \mathbf{x} \tau=\left(\frac{\mathrm{b}_{\mathrm{f}} \cdot \mathrm{V}}{8 \cdot \mathrm{~b}_{\mathrm{w}} \cdot \mathrm{I}}\right) \cdot\left(\mathrm{D}^{2}-\mathrm{d}_{\mathrm{w}}^{2}\right)$
ex $344.3234 \mathrm{MPa}=\left(\frac{250 \mathrm{~mm} \cdot 24.8 \mathrm{kN}}{8 \cdot .040 \mathrm{~m} \cdot 36000000 \mathrm{~mm}^{4}}\right) \cdot\left((800 \mathrm{~mm})^{2}-(15 \mathrm{~mm})^{2}\right)$
14）Maximum Longitudinal Shear Stress in Web for I beam
$f x \tau_{\text {maxlongitudinal }}=\left(\left(\frac{\mathrm{b}_{\mathrm{f}} \cdot \mathrm{V}}{8 \cdot \mathrm{~b}_{\mathrm{w}} \cdot \mathrm{I}} \cdot\left(\mathrm{D}^{2}-\mathrm{d}_{\mathrm{w}}^{2}\right)\right)\right)+\left(\frac{\mathrm{V} \cdot \mathrm{d}_{\mathrm{w}}^{2}}{8 \cdot \mathrm{I}}\right)$
15) Moment of Inertia given Longitudinal Shear Stress at lower edge in Flange of I beam
$f \mathrm{f} I=\left(\frac{\mathrm{V}}{8 \cdot \tau}\right) \cdot\left(\mathrm{D}^{2}-\mathrm{d}_{\mathrm{w}}^{2}\right)$
ex $3.6 \mathrm{E}^{\wedge} 7 \mathrm{~mm}^{4}=\left(\frac{24.8 \mathrm{kN}}{8 \cdot 55 \mathrm{MPa}}\right) \cdot\left((800 \mathrm{~mm})^{2}-(15 \mathrm{~mm})^{2}\right)$
16) Moment of Inertia given Longitudinal Shear Stress in Web for I beam
$f \mathrm{fx}=\left(\frac{\mathrm{b}_{\mathrm{f}} \cdot V}{8 \cdot \tau \cdot \mathrm{~b}_{\mathrm{w}}}\right) \cdot\left(\mathrm{D}^{2}-\mathrm{d}_{\mathrm{w}}^{2}\right)$
ex $2.3 \mathrm{E}^{\wedge} 8 \mathrm{~mm}^{4}=\left(\frac{250 \mathrm{~mm} \cdot 24.8 \mathrm{kN}}{8 \cdot 55 \mathrm{MPa} \cdot .040 \mathrm{~m}}\right) \cdot\left((800 \mathrm{~mm})^{2}-(15 \mathrm{~mm})^{2}\right)$
17) Moment of Inertia given Maximum Longitudinal Shear Stress in Web for I beam
$f \mathrm{fx}=\frac{\left(\frac{\mathrm{b}_{\mathrm{f}} \cdot \mathrm{V}}{8 \cdot \mathrm{~b}_{\mathrm{w}}}\right) \cdot\left(\mathrm{D}^{2}-\mathrm{d}_{\mathrm{w}}^{2}\right)}{\tau_{\max }}+\frac{\frac{\mathrm{V} \cdot \mathrm{d}_{\mathrm{w}}^{2}}{8}}{\tau_{\max }}$
ex $3 \mathrm{E}^{\wedge} 8 \mathrm{~mm}^{4}=\frac{\left(\frac{250 \mathrm{~mm} \cdot 24.8 \mathrm{kN}}{8 \cdot 040 \mathrm{~m}}\right) \cdot\left((800 \mathrm{~mm})^{2}-(15 \mathrm{~mm})^{2}\right)}{42 \mathrm{MPa}}+\frac{\frac{24.8 \mathrm{kN} \cdot(15 \mathrm{~mm})^{2}}{8}}{42 \mathrm{MPa}}$
18) Polar Moment of Inertia given Torsional Shear Stress
$\mathrm{fx} \mathrm{J}=\frac{\mathrm{T} \cdot \mathrm{R}}{\tau_{\max }}$
ex $2.22619 \mathrm{~mm}^{4}=\frac{0.85 \mathrm{kN}^{*} \mathrm{~m} \cdot 110 \mathrm{~mm}}{42 \mathrm{MPa}}$
19) Transverse Shear for Longitudinal Shear Stress in Web for I Beam
$\mathrm{fx} \mathrm{V}=\frac{8 \cdot \mathrm{I} \cdot \tau \cdot \mathrm{b}_{\mathrm{w}}}{\mathrm{b}_{\mathrm{f}} \cdot\left(\mathrm{D}^{2}-\mathrm{d}_{\mathrm{w}}^{2}\right)}$
ex $3.961393 \mathrm{kN}=\frac{8 \cdot 36000000 \mathrm{~mm}^{4} \cdot 55 \mathrm{MPa} \cdot .040 \mathrm{~m}}{250 \mathrm{~mm} \cdot\left((800 \mathrm{~mm})^{2}-(15 \mathrm{~mm})^{2}\right)}$
20) Transverse Shear force given Maximum Longitudinal Shear Stress in Web for I beam
$\mathrm{fx} \mathrm{V}=\frac{\tau_{\text {maxlongitudinal }} \cdot \mathrm{b}_{\mathrm{w}} \cdot 8 \cdot \mathrm{I}}{\left(\mathrm{b}_{\mathrm{f}} \cdot\left(\mathrm{D}^{2}-\mathrm{d}_{\mathrm{w}}^{2}\right)\right)+\left(\mathrm{b}_{\mathrm{w}} \cdot\left(\mathrm{d}_{\mathrm{w}}^{2}\right)\right)}$
ex $18.00604 \mathrm{kN}=\frac{250.01 \mathrm{MPa} \cdot .040 \mathrm{~m} \cdot 8 \cdot 36000000 \mathrm{~mm}^{4}}{\left(250 \mathrm{~mm} \cdot\left((800 \mathrm{~mm})^{2}-(15 \mathrm{~mm})^{2}\right)\right)+\left(.040 \mathrm{~m} \cdot\left((15 \mathrm{~mm})^{2}\right)\right)}$
21) Transverse Shear given Longitudinal Shear Stress in Flange for I beam
$f \times V=\frac{8 \cdot I \cdot \tau}{D^{2}-d_{w}^{2}}$
Open Calculator
ex $24.7587 \mathrm{kN}=\frac{8 \cdot 36000000 \mathrm{~mm}^{4} \cdot 55 \mathrm{MPa}}{(800 \mathrm{~mm})^{2}-(15 \mathrm{~mm})^{2}}$
Longitudinal Shear Stress for Rectangular Section
22) Average Longitudinal Shear Stress for Rectangular Section
$f \mathrm{x} \mathrm{q}_{\mathrm{avg}}=\frac{\mathrm{V}}{\mathrm{b} \cdot \mathrm{d}}$
$\mathrm{ex} 0.183704 \mathrm{MPa}=\frac{24.8 \mathrm{kN}}{300 \mathrm{~mm} \cdot 450 \mathrm{~mm}}$
23) Breadth for given Maximum Longitudinal Shear Stress for Rectangular Section
$f \mathbf{x} \mathbf{b}=\frac{3 \cdot \mathrm{~V}}{2 \cdot \tau_{\text {maxlongitudinal }} \cdot \mathrm{d}}$
Open Calculator
ex $0.330653 \mathrm{~mm}=\frac{3 \cdot 24.8 \mathrm{kN}}{2 \cdot 250.01 \mathrm{MPa} \cdot 450 \mathrm{~mm}}$
24) Breadth given Average Longitudinal Shear Stress for Rectangular Section
$f \mathrm{fx}=\frac{\mathrm{V}}{\mathrm{q}_{\mathrm{avg}} \cdot \mathrm{d}}$
ex $300.006 \mathrm{~mm}=\frac{24.8 \mathrm{kN}}{0.1837 \mathrm{MPa} \cdot 450 \mathrm{~mm}}$
25) Depth given Average Longitudinal Shear Stress for Rectangular Section
$\mathrm{fx} \mathrm{d}=\frac{\mathrm{V}}{\mathrm{q}_{\text {avg }} \cdot \mathrm{b}}$
ex $450.0091 \mathrm{~mm}=\frac{24.8 \mathrm{kN}}{0.1837 \mathrm{MPa} \cdot 300 \mathrm{~mm}}$
26) Maximum Longitudinal Shear Stress for Rectangular Section
$\mathrm{fx} \tau_{\text {maxlongitudinal }}=\frac{3 \cdot \mathrm{~V}}{2 \cdot \mathrm{~b} \cdot \mathrm{~d}}$
Open Calculator
ex $275.5556 \mathrm{MPa}=\frac{3 \cdot 24.8 \mathrm{kN}}{2 \cdot 300 \mathrm{~mm} \cdot 450 \mathrm{~mm}}$
27) Transverse Shear given Average Longitudinal Shear Stress for Rectangular Section
$f \mathrm{x} V=\mathrm{q}_{\mathrm{avg}} \cdot \mathrm{b} \cdot \mathrm{d}$
ex $24.7995 \mathrm{kN}=0.1837 \mathrm{MPa} \cdot 300 \mathrm{~mm} \cdot 450 \mathrm{~mm}$
28) Transverse Shear given Maximum Longitudinal Shear Stress for Rectangular Section
$f \mathrm{x} \mathrm{V}=\left(\tau_{\text {maxlongitudinal }} \cdot \mathrm{b} \cdot \mathrm{d} \cdot\left(\frac{2}{3}\right)\right)$
ex $0.022501 \mathrm{kN}=\left(250.01 \mathrm{MPa} \cdot 300 \mathrm{~mm} \cdot 450 \mathrm{~mm} \cdot\left(\frac{2}{3}\right)\right)$

Longitudinal Shear Stress for Solid Circular Section

29) Average Longitudinal Shear Stress for Solid Circular Section
$f \mathbf{x} \mathrm{q}_{\mathrm{avg}}=\frac{\mathrm{V}}{\pi \cdot \mathrm{r}^{2}}$
ex $0.18423 \mathrm{MPa}=\frac{24.8 \mathrm{kN}}{\pi \cdot(207 \mathrm{~mm})^{2}}$
30) Maximum Longitudinal Shear Stress for Solid Circular Section
$f \mathbf{x} \tau_{\text {maxlongitudinal }}=\frac{4 \cdot \mathrm{~V}}{3 \cdot \pi \cdot \mathrm{r}^{2}}$
$245.6404 \mathrm{MPa}=\frac{4 \cdot 24.8 \mathrm{kN}}{3 \cdot \pi \cdot(207 \mathrm{~mm})^{2}}$
31) Radius given Average Longitudinal Shear Stress for Solid Circular Section
$\mathbf{f x} r=\sqrt{\frac{\mathrm{V}}{\pi \cdot \mathrm{q}_{\mathrm{avg}}}}$
Open Calculator
ex $207.2986 \mathrm{~mm}=\sqrt{\frac{24.8 \mathrm{kN}}{\pi \cdot 0.1837 \mathrm{MPa}}}$
32) Radius given Maximum Longitudinal Shear Stress for Solid Circular Section
$\mathrm{fx} \mathrm{r}=\sqrt{\frac{4 \cdot \mathrm{~V}}{3 \cdot \pi \cdot \tau_{\text {maxlongitudinal }}}}$
ex $0.006488 \mathrm{~mm}=\sqrt{\frac{4 \cdot 24.8 \mathrm{kN}}{3 \cdot \pi \cdot 250.01 \mathrm{MPa}}}$
33) Transverse Shear given Average Longitudinal Shear Stress for Solid Circular Section
$\mathrm{fx} \mathrm{V}=\mathrm{q}_{\mathrm{avg}} \cdot \pi \cdot \mathrm{r}^{2}$
ex $24.72861 \mathrm{kN}=0.1837 \mathrm{MPa} \cdot \pi \cdot(207 \mathrm{~mm})^{2}$
34) Transverse Shear given Maximum Longitudinal Shear Stress for Solid Circular Section
fx
$\mathrm{V}=\frac{\tau_{\max } \cdot \pi \cdot \mathrm{r}^{2} \cdot 3}{4}$
ex $4240.344 \mathrm{kN}=\frac{42 \mathrm{MPa} \cdot \pi \cdot(207 \mathrm{~mm})^{2} \cdot 3}{4}$

Maximum Stress of a Triangular Section

35) Base of Triangular Section given Maximum Shear Stress
$\mathrm{b}_{\text {tri }}=\frac{3 \cdot \mathrm{~V}}{\tau_{\max } \cdot \mathrm{h}_{\text {tri }}}$
$31.63265 \mathrm{~mm}=\frac{3 \cdot 24.8 \mathrm{kN}}{42 \mathrm{MPa} \cdot 56 \mathrm{~mm}}$
36) Base of Triangular Section given Shear Stress at Neutral Axis
$f \mathrm{x} \mathrm{b}_{\mathrm{tri}}=\frac{8 \cdot \mathrm{~V}}{3 \cdot \tau_{\mathrm{NA}} \cdot \mathrm{h}_{\mathrm{tri}}}$
ex $31.42862 \mathrm{~mm}=\frac{8 \cdot 24.8 \mathrm{kN}}{3 \cdot 37.5757 \mathrm{MPa} \cdot 56 \mathrm{~mm}}$
37) Height of Triangular Section given Maximum Shear Stress
$\mathrm{h}_{\mathrm{tri}}=\frac{3 \cdot \mathrm{~V}}{\mathrm{~b}_{\mathrm{tri}} \cdot \tau_{\max }}$
ex $55.35714 \mathrm{~mm}=\frac{3 \cdot 24.8 \mathrm{kN}}{32 \mathrm{~mm} \cdot 42 \mathrm{MPa}}$
38) Height of Triangular Section given Shear Stress at Neutral Axis
$f \mathrm{x} \mathrm{h}_{\mathrm{tri}}=\frac{8 \cdot \mathrm{~V}}{3 \cdot \mathrm{~b}_{\mathrm{tri}} \cdot \tau_{\mathrm{NA}}}$
ex $55.00008 \mathrm{~mm}=\frac{8 \cdot 24.8 \mathrm{kN}}{3 \cdot 32 \mathrm{~mm} \cdot 37.5757 \mathrm{MPa}}$
39) Maximum Shear Stress of Triangular Section
$f \mathbf{x} \tau_{\max }=\frac{3 \cdot \mathrm{~V}}{\mathrm{~b}_{\text {tri }} \cdot \mathrm{h}_{\text {tri }}}$
ex $41.51786 \mathrm{MPa}=\frac{3 \cdot 24.8 \mathrm{kN}}{32 \mathrm{~mm} \cdot 56 \mathrm{~mm}}$
40) Shear Stress at Neutral Axis in Triangular Section
$\mathrm{fx}_{\mathrm{X}} \tau_{\mathrm{NA}}=\frac{8 \cdot \mathrm{~V}}{3 \cdot \mathrm{~b}_{\mathrm{tri}} \cdot \mathrm{h}_{\text {tri }}}$
ex $36.90476 \mathrm{MPa}=\frac{8 \cdot 24.8 \mathrm{kN}}{3 \cdot 32 \mathrm{~mm} \cdot 56 \mathrm{~mm}}$
41) Transverse Shear Force of Triangular Section given Maximum Shear Stress
$\mathrm{fx} \mathrm{V}=\frac{\mathrm{h}_{\mathrm{tri}} \cdot \mathrm{b}_{\mathrm{tri}} \cdot \tau_{\max }}{3}$
ex $25.088 \mathrm{kN}=\frac{56 \mathrm{~mm} \cdot 32 \mathrm{~mm} \cdot 42 \mathrm{MPa}}{3}$
42) Transverse Shear Force of Triangular Section given Shear Stress at Neutral Axis
$\mathrm{fx} \mathrm{V}=\frac{3 \cdot \mathrm{~b}_{\text {tri }} \cdot \mathrm{h}_{\text {tri }} \cdot \tau_{\mathrm{NA}}}{8}$
ex $25.25087 \mathrm{kN}=\frac{3 \cdot 32 \mathrm{~mm} \cdot 56 \mathrm{~mm} \cdot 37.5757 \mathrm{MPa}}{8}$

Variables Used

- A Cross Sectional Area (Square Meter)
- b Breadth of Rectangular Section (Millimeter)
- $\mathbf{b}_{\mathbf{f}}$ Width of Flange (Millimeter)
- $\mathbf{b}_{\text {tri }}$ Base of Triangular Section (Millimeter)
- $\mathbf{b}_{\mathbf{w}}$ Width of Web (Meter)
- d Depth of Rectangular Section (Millimeter)
- D Overall Depth of I Beam (Millimeter)
- $\mathbf{d}_{\mathbf{w}}$ Depth of Web (Millimeter)
- $\mathbf{h}_{\text {tri }}$ Height of Triangular Section (Millimeter)
- I Area Moment of Inertia (Millimeter ${ }^{4}$)
- J Polar Moment of Inertia (Millimeter4)
- $\mathbf{q a v g}$ Average Shear Stress (Megapascal)
- r Radius of Circular Section (Millimeter)
- R Radius of Shaft (Millimeter)
- T Torsional Moment (Kilonewton Meter)
- V Shear Force (Kilonewton)
- y Distance from Neutral Axis (Millimeter)
- т Shear Stress (Megapascal)
- $\mathbf{T}_{\text {max }}$ Maximum Shear Stress (Megapascal)
- Tmaxlongitudinal Maximum Longitudinal Shear Stress (Megapascal)
- TNA Shear Stress at Neutral Axis (Megapascal)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm), Meter (m)

Length Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Torque in Kilonewton Meter (kN*m)

Torque Unit Conversion

- Measurement: Second Moment of Area in Millimeter ${ }^{4}$ (mm^{4})

Second Moment of Area Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Mohr's Circle of Stresses Formulas
- Beam Moments Formulas
- Bending Stress Formulas
- Principal Stress Formulas
- Combined Axial and Bending Loads Formulas
- Elastic Stability of Columns Formulas
- Shear Stress Formulas
- Slope and Deflection Formulas
- Strain Energy Formulas
- Torsion Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

