unitsconverters.com

Submerged Weirs Formulas

Calculators!

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Submerged Weirs Formulas

Submerged Weirs ©

1) Coefficient of Discharge given Discharge through Drowned Portion
$\mathrm{fx} \mathrm{C}_{\mathrm{d}}=\frac{\mathrm{Q}_{2}}{\left(\mathrm{~L}_{\mathrm{w}} \cdot \mathrm{h}_{2}\right) \cdot \sqrt{2 \cdot \mathrm{~g} \cdot\left(\mathrm{H}_{\text {Upstream }}-\mathrm{h}_{2}\right)}}$
ex $0.659966=\frac{99.96 \mathrm{~m}^{3} / \mathrm{s}}{(3 \mathrm{~m} \cdot 5.1 \mathrm{~m}) \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot(10.1 \mathrm{~m}-5.1 \mathrm{~m})}}$
2) Coefficient of Discharge given Discharge through Free Weir Portion
$f \mathrm{f} \mathrm{C}_{\mathrm{d}}=\frac{3 \cdot \mathrm{Q}_{1}}{2 \cdot \mathrm{~L}_{\mathrm{w}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot\left(\mathrm{H}_{\text {Upstream }}-\mathrm{h}_{2}\right)^{\frac{3}{2}}}$
ex $0.506086=\frac{3 \cdot 50.1 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot 3 \mathrm{~m} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot(10.1 \mathrm{~m}-5.1 \mathrm{~m})^{\frac{3}{2}}}$
3) Coefficient of Discharge if Velocity is Approached for Submerged Weir
$f \mathrm{fx} \mathrm{C}_{\mathrm{d}}=\frac{\mathrm{Q}_{2}}{\mathrm{~L}_{\mathrm{w}} \cdot \mathrm{h}_{2} \cdot\left(\sqrt{2 \cdot \mathrm{~g} \cdot\left(\mathrm{H}_{\text {Upstream }}-\mathrm{h}_{2}\right)+\mathrm{v}_{\mathrm{su}}^{2}}\right)}$
ex $0.60974=\frac{99.96 \mathrm{~m}^{3} / \mathrm{s}}{3 \mathrm{~m} \cdot 5.1 \mathrm{~m} \cdot\left(\sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot(10.1 \mathrm{~m}-5.1 \mathrm{~m})+(4.1 \mathrm{~m} / \mathrm{s})^{2}}\right)}$
4) Coefficient of Discharge if Velocity is Approached given Discharge through Free Weir
$f \mathrm{fx} \mathrm{C}_{\mathrm{d}}=\frac{3 \cdot \mathrm{Q}_{1}}{2 \cdot \mathrm{~L}_{\mathrm{w}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot\left(\left(\left(\mathrm{H}_{\text {Upstream }}-\mathrm{h}_{2}\right)+\left(\frac{\mathrm{v}_{\mathrm{su}}^{2}}{2 \cdot \mathrm{~g}}\right)\right)^{\frac{3}{2}}-\left(\frac{\mathrm{v}_{\mathrm{su}}^{2}}{2 \cdot \mathrm{~g}}\right)^{\frac{3}{2}}\right)}$
5) Discharge through Drowned Portion
$f \times \mathrm{Q}_{2}=\mathrm{C}_{\mathrm{d}} \cdot\left(\mathrm{L}_{\mathrm{w}} \cdot \mathrm{h}_{2}\right) \cdot \sqrt{2 \cdot \mathrm{~g} \cdot\left(\mathrm{H}_{\text {Upstream }}-\mathrm{h}_{2}\right)}$
ex $99.9651 \mathrm{~m}^{3} / \mathrm{s}=0.66 \cdot(3 \mathrm{~m} \cdot 5.1 \mathrm{~m}) \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot(10.1 \mathrm{~m}-5.1 \mathrm{~m})}$
6) Discharge through Drowned Portion given Total Discharge over Submerged Weir
$f \times Q_{2}=Q_{T}-Q_{1}$
ex $124.6 \mathrm{~m}^{3} / \mathrm{s}=174.7 \mathrm{~m}^{3} / \mathrm{s}-50.1 \mathrm{~m}^{3} / \mathrm{s}$
7) Discharge through Free Weir if Velocity is Approached
fx
$\mathrm{Q}_{1}=\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot\left(\left(\left(\mathrm{H}_{\mathrm{Upstream}}-\mathrm{h}_{2}\right)+\left(\frac{\mathrm{v}_{\mathrm{su}}^{2}}{2 \cdot \mathrm{~g}}\right)\right)^{\frac{3}{2}}-\left(\frac{\mathrm{v}_{\mathrm{su}}^{2}}{2 \cdot \mathrm{~g}}\right)^{\frac{3}{2}}\right)$
ex
$78.20741 \mathrm{~m}^{3} / \mathrm{s}=\left(\frac{2}{3}\right) \cdot 0.66 \cdot 3 \mathrm{~m} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot\left(\left((10.1 \mathrm{~m}-5.1 \mathrm{~m})+\left(\frac{(4.1 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)\right)^{\frac{3}{2}}-\left(\frac{(4.1 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)\right.$
8) Discharge through Free Weir Portion
f. $\mathrm{Q}_{1}=\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot\left(\mathrm{H}_{\text {Upstream }}-\mathrm{h}_{2}\right)^{\frac{3}{2}}$
ex $65.33667 \mathrm{~m}^{3} / \mathrm{s}=\left(\frac{2}{3}\right) \cdot 0.66 \cdot 3 \mathrm{~m} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot(10.1 \mathrm{~m}-5.1 \mathrm{~m})^{\frac{3}{2}}$
9) Discharge through Free Weir Portion given Total Discharge over Submerged Weir \longleftarrow
$f \times Q_{1}=Q_{T}-Q_{2}$
ex $74.74 \mathrm{~m}^{3} / \mathrm{s}=174.7 \mathrm{~m}^{3} / \mathrm{s}-99.96 \mathrm{~m}^{3} / \mathrm{s}$
10) Discharge through Submerged Weir if Velocity is Approached
$\mathrm{fx} \mathrm{Q}_{2}=\mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \mathrm{h}_{2} \cdot\left(\sqrt{2 \cdot \mathrm{~g} \cdot\left(\mathrm{H}_{\text {Upstream }}-\mathrm{h}_{2}\right)+\mathrm{v}_{\mathrm{su}}^{2}}\right)$
ex $108.1995 \mathrm{~m}^{3} / \mathrm{s}=0.66 \cdot 3 \mathrm{~m} \cdot 5.1 \mathrm{~m} \cdot\left(\sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot(10.1 \mathrm{~m}-5.1 \mathrm{~m})+(4.1 \mathrm{~m} / \mathrm{s})^{2}}\right)$
11) Head on Downstream Weir for Discharge through Free Weir Portion
$f \mathbf{f} \mathrm{~h}_{2}=-\left(\frac{3 \cdot \mathrm{Q}_{1}}{2 \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \sqrt{2 \cdot \mathrm{~g}}}\right)^{\frac{2}{3}}+\mathrm{H}_{\text {Upstream }}$
$\operatorname{ex} 5.911192 \mathrm{~m}=-\left(\frac{3 \cdot 50.1 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot 0.66 \cdot 3 \mathrm{~m} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}}\right)^{\frac{2}{3}}+10.1 \mathrm{~m}$
12) Head on Upstream Weir for Discharge through Drowned Portion
$f \mathrm{fx} \mathrm{H}_{\text {Upstream }}=\left(\frac{\mathrm{Q}_{2}}{\mathrm{C}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \mathrm{h}_{2}}\right)^{2} \cdot\left(\frac{1}{2 \cdot \mathrm{~g}}\right)+\mathrm{h}_{2}$
ex $10.09949 \mathrm{~m}=\left(\frac{99.96 \mathrm{~m}^{3} / \mathrm{s}}{0.66 \cdot 3 \mathrm{~m} \cdot 5.1 \mathrm{~m}}\right)^{2} \cdot\left(\frac{1}{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)+5.1 \mathrm{~m}$
13) Head on Upstream Weir given Discharge through Free Weir Portion
$f \mathbf{f x} H_{\text {Upstream }}=\left(\frac{3 \cdot Q_{1}}{2 \cdot C_{d} \cdot L_{w} \cdot \sqrt{2 \cdot g}}\right)^{\frac{2}{3}}+h_{2}$
ex $9.288808 \mathrm{~m}=\left(\frac{3 \cdot 50.1 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot 0.66 \cdot 3 \mathrm{~m} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}}\right)^{\frac{2}{3}}+5.1 \mathrm{~m}$
14) Length of Crest for Discharge through Drowned Portion
$f \times L_{\mathrm{w}}=\frac{\mathrm{Q}_{2}}{\mathrm{C}_{\mathrm{d}} \cdot \mathrm{h}_{2} \cdot\left(\sqrt{2 \cdot \mathrm{~g} \cdot\left(\mathrm{H}_{\text {Upstream }}-\mathrm{h}_{2}\right)+\mathrm{v}_{\mathrm{su}}^{2}}\right)}$
ex $2.771547 \mathrm{~m}=\frac{99.96 \mathrm{~m}^{3} / \mathrm{s}}{0.66 \cdot 5.1 \mathrm{~m} \cdot\left(\sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot(10.1 \mathrm{~m}-5.1 \mathrm{~m})+(4.1 \mathrm{~m} / \mathrm{s})^{2}}\right)}$
15) Length of Crest for Discharge through Free Weir
$f \mathrm{x} \mathrm{L}_{\mathrm{w}}=\frac{3 \cdot \mathrm{Q}_{1}}{2 \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot\left(\left(\left(\mathrm{H}_{\text {Upstream }}-\mathrm{h}_{2}\right)+\left(\frac{\mathrm{v}_{\mathrm{su}}^{2}}{2 \cdot \mathrm{~g}}\right)\right)^{\frac{3}{2}}-\left(\frac{\mathrm{v}_{\mathrm{su}}^{2}}{2 \cdot \mathrm{~g}}\right)^{\frac{3}{2}}\right)}$
ex $1.921813 \mathrm{~m}=\frac{3 \cdot 50.1 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot\left(\left((10.1 \mathrm{~m}-5.1 \mathrm{~m})+\left(\frac{(4.1 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)\right)^{\frac{3}{2}}-\left(\frac{(4.1 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)^{\frac{3}{2}}\right)}$
16) Length of Crest for Discharge through Free Weir Portion
$f \times \mathrm{L}_{\mathrm{w}}=\frac{3 \cdot \mathrm{Q}_{1}}{2 \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot\left(\mathrm{H}_{\text {Upstream }}-\mathrm{h}_{2}\right)^{\frac{3}{2}}}$
ex $2.300393 \mathrm{~m}=\frac{3 \cdot 50.1 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot(10.1 \mathrm{~m}-5.1 \mathrm{~m})^{\frac{3}{2}}}$
17) Total Discharge over Submerged Weir \longleftarrow
$f \times Q_{T}=Q_{1}+Q_{2}$
ex $150.06 \mathrm{~m}^{3} / \mathrm{s}=50.1 \mathrm{~m}^{3} / \mathrm{s}+99.96 \mathrm{~m}^{3} / \mathrm{s}$

Variables Used

- C_{d} Coefficient of Discharge
- g Acceleration due to Gravity (Meter per Square Second)
- $\mathbf{h}_{\mathbf{2}}$ Head on Downstream of Weir (Meter)
- HUpstream Head on Upstream of Weir (Meter)
- L_{w} Length of Weir Crest (Meter)
- \mathbf{Q}_{1} Discharge through Free Portion (Cubic Meter per Second)
- \mathbf{Q}_{2} Discharge through Drowned Portion (Cubic Meter per Second)
- $\mathbf{Q}_{\mathbf{T}}$ Total Discharge of Submerged Weir (Cubic Meter per Second)
- $\mathbf{V}_{\mathbf{s u}}$ Velocity over Submerged Weir (Meter per Second)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Speed in Meter per Second (m / s)

Speed Unit Conversion

- Measurement: Acceleration in Meter per Square Second ($\mathrm{m} / \mathrm{s}^{2}$)

Acceleration Unit Conversion \qquad

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$)

Volumetric Flow Rate Unit Conversion

Check other formula lists

- Broad Crested Weir Formulas
- Submerged Weirs Formulas
- Flow Over Rectangular Sharp-Crested Weir or Notch - Time Required to Empty a Reservoir with Formulas Rectangular Weir Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

