
calculatoratoz.com

unitsconverters.com

Arch Dams Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 45 Arch Dams Formulas

Arch Dams ©

1) Angle between Crown and Abutments given Thrust at Abutments of Arch Dam $\boxed{\square}$
$\mathrm{fx} \theta=a \cos \left(\frac{\mathrm{P}-\mathrm{P}_{\mathrm{v}} \cdot \mathrm{r}}{-\mathrm{P}_{\mathrm{v}} \cdot \mathrm{r}+\mathrm{F}}\right)$
ex $29.95684^{\circ}=a \cos \left(\frac{16 \mathrm{kN} / \mathrm{m}-21.7 \mathrm{kPa} / \mathrm{m}^{2} \cdot 5.5 \mathrm{~m}}{-21.7 \mathrm{kPa} / \mathrm{m}^{2} \cdot 5.5 \mathrm{~m}+63.55 \mathrm{~N}}\right)$
2) Extrados Stresses on Arch Dam
$f x S=\left(\frac{F}{t}\right)-\left(6 \cdot \frac{M_{t}}{t^{2}}\right)$
ex $-174.125 \mathrm{~N} / \mathrm{m}^{2}=\left(\frac{63.55 \mathrm{~N}}{1.2 \mathrm{~m}}\right)-\left(6 \cdot \frac{54.5 \mathrm{~N}^{*} \mathrm{~m}}{(1.2 \mathrm{~m})^{2}}\right)$
3) Intrados Stresses on Arch Dam 凹
$f x S=\left(\frac{F}{t}\right)+\left(6 \cdot \frac{M_{t}}{t^{2}}\right)$
$\operatorname{ex} 280.0417 \mathrm{~N} / \mathrm{m}^{2}=\left(\frac{63.55 \mathrm{~N}}{1.2 \mathrm{~m}}\right)+\left(6 \cdot \frac{54.5 \mathrm{~N}^{*} \mathrm{~m}}{(1.2 \mathrm{~m})^{2}}\right)$
4) Radius to centerline given Thrust at Abutments of Arch Dam
$\mathrm{fx} r=\frac{\frac{\mathrm{P}-\mathrm{F} \cdot \cos (\theta)}{1-\cos (\theta)}}{\mathrm{P}_{\mathrm{v}}}$
ex $5.484554 \mathrm{~m}=\frac{\frac{16 \mathrm{kN} / \mathrm{m}-63.55 \mathrm{~N} \cdot \cos \left(30^{\circ}\right)}{1-\cos \left(30^{\circ}\right)}}{21.7 \mathrm{kPa} / \mathrm{m}^{2}}$
5) Rotation due to Moment on Arch Dam
$f \mathbf{f x}=M_{t} \cdot \frac{K_{1}}{E \cdot t \cdot t}$
ex $37.14222 \mathrm{rad}=54.5 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{10.01}{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m} \cdot 1.2 \mathrm{~m}}$
6) Rotation due to Shear on Arch Dam
$f \mathrm{fx}=\mathrm{F}_{\mathrm{s}} \cdot \frac{\mathrm{K}_{5}}{\mathrm{E} \cdot \mathrm{t}}$
Open Calculator 〔

$$
\text { ex } 37.64297 \mathrm{rad}=48.5 \mathrm{~N} \cdot \frac{9.5}{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m}}
$$

7) Rotation due to Twist on Arch Dam
$\mathrm{fx} \Phi \mathrm{M} \cdot \frac{\mathrm{K}_{4}}{\mathrm{E} \cdot \mathrm{t}^{2}}$
ex $34.79167 \mathrm{rad}=51 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{10.02}{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot(1.2 \mathrm{~m})^{2}}$
8) Shear Force given Deflection due to Shear on Arch Dam
$f \mathrm{fx} \mathrm{F}_{\mathrm{s}}=\delta \cdot \frac{\mathrm{E}}{\mathrm{K}_{3}}$
ex $49.11111 \mathrm{~N}=48.1 \mathrm{~m} \cdot \frac{10.2 \mathrm{~N} / \mathrm{m}^{2}}{9.99}$
9) Shear Force given Rotation due to Shear on Arch Dam
$f \mathrm{f} \mathrm{F}_{\mathrm{s}}=\Phi \cdot \frac{\mathrm{E} \cdot \mathrm{t}}{\mathrm{K}_{5}}$
$\operatorname{ex} 45.09474 \mathrm{~N}=35 \mathrm{rad} \cdot \frac{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m}}{9.5}$

Constant Thickness on Arch Dam

10) Constant K1 given Rotation due to Moment on Arch Dam
$\mathrm{fx} \mathrm{K}_{1}=\frac{\Phi \cdot(\mathrm{E} \cdot \mathrm{t} \cdot \mathrm{t})}{\mathrm{M}_{\mathrm{t}}}$
ex $9.432661=\frac{35 \mathrm{rad} \cdot\left(10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m} \cdot 1.2 \mathrm{~m}\right)}{54.5 \mathrm{~N}^{*} \mathrm{~m}}$
11) Constant K2 given Deflection due to Thrust on Arch Dam
$\mathrm{fx}_{\mathrm{x}} \mathrm{K}_{2}=\delta \cdot \frac{\mathrm{E}}{\mathrm{F}}$
ex $7.72022=48.1 \mathrm{~m} \cdot \frac{10.2 \mathrm{~N} / \mathrm{m}^{2}}{63.55 \mathrm{~N}}$
12) Constant K3 given Deflection due to Shear on Arch Dam
$\mathrm{fx}_{\mathrm{x}} \mathrm{K}_{3}=\delta \cdot \frac{\mathrm{E}}{\mathrm{F}_{\mathrm{s}}}$
ex $10.11588=48.1 \mathrm{~m} \cdot \frac{10.2 \mathrm{~N} / \mathrm{m}^{2}}{48.5 \mathrm{~N}}$
13) Constant K4 given Rotation due to Twist on Arch Dam
$f \mathrm{x} \mathrm{K}_{4}=\left(\mathrm{E} \cdot \mathrm{t}^{2}\right) \cdot \frac{\Phi}{\mathrm{M}}$
Open Calculator
ex $10.08=\left(10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot(1.2 \mathrm{~m})^{2}\right) \cdot \frac{35 \mathrm{rad}}{51 \mathrm{~N}^{*} \mathrm{~m}}$
14) Constant K5 given Deflection due to Moments on Arch Dam
$\mathrm{fx} \mathrm{K}_{5}=\delta \cdot \frac{\mathrm{E} \cdot \mathrm{t}}{\mathrm{M}_{\mathrm{t}}}$
ex $10.80264=48.1 \mathrm{~m} \cdot \frac{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m}}{54.5 \mathrm{~N}^{*} \mathrm{~m}}$
15) Constant K5 given Rotation due to Shear on Arch Dam
$f \mathrm{x} \mathrm{K}_{5}=\Phi \cdot \frac{\mathrm{E} \cdot \mathrm{t}}{\mathrm{F}_{\mathrm{s}}}$
ex $8.83299=35 \mathrm{rad} \cdot \frac{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m}}{48.5 \mathrm{~N}}$

Deflection on Arch Dams 저저N

16) Deflection due to Moments on Arch Dam

$$
\mathrm{fx} \delta=\mathrm{M}_{\mathrm{t}} \cdot \frac{\mathrm{~K}_{5}}{\mathrm{E} \cdot \mathrm{t}}
$$

ex $42.29984 \mathrm{~m}=54.5 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{9.5}{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m}}$
17) Deflection due to Shear on Arch Dam
$\mathrm{fx} \delta=\mathrm{F}_{\mathrm{s}} \cdot \frac{\mathrm{K}_{3}}{\mathrm{E}}$
ex $47.50147 \mathrm{~m}=48.5 \mathrm{~N} \cdot \frac{9.99}{10.2 \mathrm{~N} / \mathrm{m}^{2}}$
18) Deflection due to Thrust on Arch Dam
$f_{\mathrm{x}} \delta=\mathrm{F} \cdot \frac{\mathrm{K}_{2}}{\mathrm{E}}$
Open Calculator
ex $62.92696 \mathrm{~m}=63.55 \mathrm{~N} \cdot \frac{10.1}{10.2 \mathrm{~N} / \mathrm{m}^{2}}$

Elastic Modulus of Rock

19) Elastic Modulus of Rock given Deflection due to Moments on Arch Dam
$\mathrm{fx} \mathrm{E}=\mathrm{M}_{\mathrm{t}} \cdot \frac{\mathrm{K}_{5}}{\delta \cdot \mathrm{~T}}$
Open Calculator
ex $8.895895 \mathrm{~N} / \mathrm{m}^{2}=54.5 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{9.5}{48.1 \mathrm{~m} \cdot 1.21 \mathrm{~m}}$
20) Elastic Modulus of Rock given Deflection due to Shear on Arch Dam
$f \mathrm{x}=\mathrm{F}_{\mathrm{s}} \cdot \frac{\mathrm{K}_{3}}{\delta}$
ex $10.07308 \mathrm{~N} / \mathrm{m}^{2}=48.5 \mathrm{~N} \cdot \frac{9.99}{48.1 \mathrm{~m}}$
21) Elastic Modulus of Rock given Deflection due to Thrust on Arch Dam
$f \mathrm{f} \mathrm{E}=\mathrm{F} \cdot \frac{\mathrm{K}_{2}}{\delta}$

$$
\text { ex } 13.34418 \mathrm{~N} / \mathrm{m}^{2}=63.55 \mathrm{~N} \cdot \frac{10.1}{48.1 \mathrm{~m}}
$$

22) Elastic Modulus of Rock given Rotation due to Moment on Arch Dam
$f \mathrm{x} E=\mathrm{M}_{\mathrm{t}} \cdot \frac{\mathrm{K}_{1}}{\Phi \cdot T \cdot \mathrm{t}}$
Open Calculator
ex $10.73485 \mathrm{~N} / \mathrm{m}^{2}=54.5 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{10.01}{35 \mathrm{rad} \cdot 1.21 \mathrm{~m} \cdot 1.2 \mathrm{~m}}$
23) Elastic Modulus of Rock given Rotation due to Shear on Arch Dam
$f_{\mathrm{x}} \mathrm{E}=\mathrm{F}_{\mathrm{s}} \cdot \frac{\mathrm{K}_{5}}{\Phi \cdot \mathrm{~T}}$
Open Calculator
ex $10.87957 \mathrm{~N} / \mathrm{m}^{2}=48.5 \mathrm{~N} \cdot \frac{9.5}{35 \mathrm{rad} \cdot 1.21 \mathrm{~m}}$
24) Elastic Modulus of Rock given Rotation due to Twist on Arch Dam
$\mathrm{fx} \mathrm{E}=\mathrm{M} \cdot \frac{\mathrm{K}_{4}}{\Phi \cdot \mathrm{~T}^{2}}$
ex $9.972387 \mathrm{~N} / \mathrm{m}^{2}=51 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{10.02}{35 \mathrm{rad} \cdot(1.21 \mathrm{~m})^{2}}$
Moments acting on Arch Dam
25) Moment at Abutments of Arch Dam
$f x M_{t}=r \cdot((p \cdot r)-F) \cdot\left(\frac{\sin (A)}{A}-\cos (A)\right)$
Open Calculator
ex $99.7591 \mathrm{~N}^{*} \mathrm{~m}=5.5 \mathrm{~m} \cdot((8 \cdot 5.5 \mathrm{~m})-63.55 \mathrm{~N}) \cdot\left(\frac{\sin (31 \mathrm{rad})}{31 \mathrm{rad}}-\cos (31 \mathrm{rad})\right)$
26) Moment at Crown of Arch Dam
$f x M_{t}=-r \cdot((p \cdot r)-F) \cdot\left(1-\left(\frac{\sin (A)}{A}\right)\right)$
Open Calculator
ex $108.9264 \mathrm{~N}^{*} \mathrm{~m}=-5.5 \mathrm{~m} \cdot((8 \cdot 5.5 \mathrm{~m})-63.55 \mathrm{~N}) \cdot\left(1-\left(\frac{\sin (31 \mathrm{rad})}{31 \mathrm{rad}}\right)\right)$
27) Moments given Deflection due to Moments on Arch Dam
$f x M_{t}=\delta \cdot \frac{E \cdot t}{K_{5}}$
Open Calculator
ex $61.97305 \mathrm{~N}^{*} \mathrm{~m}=48.1 \mathrm{~m} \cdot \frac{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m}}{9.5}$
28) Moments given Extrados Stresses on Arch Dam
$f \mathrm{x} \mathrm{M}_{\mathrm{t}}=\sigma_{\mathrm{e}} \cdot \mathrm{t} \cdot \mathrm{t}+\mathrm{F} \cdot \frac{\mathrm{t}}{6}$
ex $48.71 \mathrm{~N}^{*} \mathrm{~m}=25 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m} \cdot 1.2 \mathrm{~m}+63.55 \mathrm{~N} \cdot \frac{1.2 \mathrm{~m}}{6}$
29) Moments given Intrados Stresses on Arch Dam
$f \mathrm{x} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{S} \cdot \mathrm{t} \cdot \mathrm{t}-\mathrm{F} \cdot \mathrm{t}}{6}$
Open Calculator \longleftarrow
ex $47.29 \mathrm{~N}^{*} \mathrm{~m}=\frac{250 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m} \cdot 1.2 \mathrm{~m}-63.55 \mathrm{~N} \cdot 1.2 \mathrm{~m}}{6}$
30) Moments given Rotation due to Moment on Arch Dam
$f \mathrm{x} \mathrm{M}_{\mathrm{t}}=\frac{\Phi \cdot(\mathrm{E} \cdot \mathrm{t} \cdot \mathrm{t})}{\mathrm{K}_{1}}$
ex $51.35664 \mathrm{~N}^{*} \mathrm{~m}=\frac{35 \mathrm{rad} \cdot\left(10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.2 \mathrm{~m} \cdot 1.2 \mathrm{~m}\right)}{10.01}$
31) Moments given Rotation due to Twist on Arch Dam
$f \mathrm{x} M=\left(\mathrm{E} \cdot \mathrm{t}^{2}\right) \cdot \frac{\Phi}{K_{4}}$
ex $51.30539 \mathrm{~N}^{*} \mathrm{~m}=\left(10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot(1.2 \mathrm{~m})^{2}\right) \cdot \frac{35 \mathrm{rad}}{10.02}$

Normal Radial Pressure of Arch Dams

32) Normal Radial Pressure at centerline given Moment at Abutments of Arch Dam U

$$
f \times P_{\mathrm{v}}=\frac{\mathrm{F}_{\mathrm{C}} \cdot \mathrm{r} \cdot\left(\left(\frac{\sin (\theta)}{\theta}\right)-\cos (\theta)\right)-\left(\mathrm{M}_{\mathrm{t}}\right)}{\left(\mathrm{r}^{2}\right) \cdot\left(\left(\frac{\sin (\theta)}{\theta}\right)-\cos (\theta)\right)}
$$

35) Normal Radial Pressure at centerline given Thrust at Crown of Arch Dam

Open Calculator
$\operatorname{ex} 21.82293 \mathrm{kPa} / \mathrm{m}^{2}=\frac{120 \mathrm{kN}}{(5.5 \mathrm{~m}) \cdot\left(1-\left(2 \cdot 30^{\circ} \cdot \frac{\sin \left(30^{\circ} \cdot \frac{\left(\frac{1.2 \mathrm{~m}}{5.5 \mathrm{~m}}\right)^{2}}{12}\right)}{9.999 \mathrm{~m}}\right)\right)}$

Radial Thickness of Element

36) Radial Thickness of Element given Deflection due to Moments on Arch Dam
$f_{x} t=M_{t} \cdot \frac{K_{5}}{E \cdot \delta}$
ex $1.055297 \mathrm{~m}=54.5 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{9.5}{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 48.1 \mathrm{~m}}$
37) Radial Thickness of Element given Rotation due to moment on Arch Dam
$f_{\mathrm{x}} \mathrm{t}=\left(\mathrm{M}_{\mathrm{t}} \cdot \frac{\mathrm{K}_{1}}{\mathrm{E} \cdot \Phi}\right)^{0.5}$
Open Calculator
ex $1.236178 \mathrm{~m}=\left(54.5 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{10.01}{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 35 \mathrm{rad}}\right)^{0.5}$
38) Radial Thickness of Element given Rotation due to Shear on Arch Dam
$f \mathbf{f x}=\mathrm{F}_{\mathrm{s}} \cdot \frac{\mathrm{K}_{5}}{\mathrm{E} \cdot \Phi}$
Open Calculator ©
ex $1.290616 \mathrm{~m}=48.5 \mathrm{~N} \cdot \frac{9.5}{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 35 \mathrm{rad}}$
39) Radial Thickness of Element given Rotation due to Twist on Arch Dam
$f \mathbf{f x} t=\left(M \cdot \frac{K_{4}}{E \cdot \Phi}\right)^{0.5}$
Open Calculator 〔
ex $1.196423 \mathrm{~m}=\left(51 \mathrm{~N}^{*} \mathrm{~m} \cdot \frac{10.02}{10.2 \mathrm{~N} / \mathrm{m}^{2} \cdot 35 \mathrm{rad}}\right)^{0.5}$

Thrust on Arch Dam

40) Thrust at Abutments of Arch Dam
$f \mathrm{x} P=\mathrm{P}_{\mathrm{v}} \cdot \mathrm{r}-\left(\mathrm{P}_{\mathrm{v}} \cdot \mathrm{r}-\mathrm{F}\right) \cdot \cos (\theta)$
Open Calculator
ex
$16.0449 \mathrm{kN} / \mathrm{m}=21.7 \mathrm{kPa} / \mathrm{m}^{2} \cdot 5.5 \mathrm{~m}-\left(21.7 \mathrm{kPa} / \mathrm{m}^{2} \cdot 5.5 \mathrm{~m}-63.55 \mathrm{~N}\right) \cdot \cos \left(30^{\circ}\right)$

41）Thrust at Crown of Arch Dam

ex $43.98877 \mathrm{~N}=(8 \cdot 5.5 \mathrm{~m}) \cdot\left(1-\left(2 \cdot 30^{\circ} \cdot \frac{\sin \left(30^{\circ} \cdot \frac{\left(\frac{1.3 \mathrm{~m}}{5.5 \mathrm{~m}}\right)^{2}}{12}\right)}{9.999 \mathrm{~m}}\right)\right)$
42）Thrust at Crown of Arch Dam given Moment at Abutments
$\mathfrak{f x} \mathrm{F}=\frac{\mathrm{M}_{\mathrm{t}}}{\mathrm{r} \cdot\left(\frac{\sin (\theta)}{\theta-(\cos (\theta))}\right)}+\mathrm{p} \cdot \mathrm{r}$
ex $37.21373 \mathrm{~N}=\frac{54.5 \mathrm{~N}^{*} \mathrm{~m}}{5.5 \mathrm{~m} \cdot\left(\frac{\sin \left(30^{\circ}\right)}{30^{\circ}-\left(\cos \left(30^{\circ}\right)\right)}\right)}+8 \cdot 5.5 \mathrm{~m}$
43）Thrust given Deflection due to Thrust on Arch Dam
$f \mathrm{~F}=\delta \cdot \frac{\mathrm{E}}{\mathrm{K}_{2}}$
$\operatorname{ex} 48.57624 \mathrm{~N}=48.1 \mathrm{~m} \cdot \frac{10.2 \mathrm{~N} / \mathrm{m}^{2}}{10.1}$
44) Thrust given Extrados Stresses on Arch Dam
$f_{x} \mathrm{~F}=\mathrm{S} \cdot \mathrm{T}_{\mathrm{b}}+6 \cdot \frac{\mathrm{M}_{\mathrm{t}}}{\mathrm{T}_{\mathrm{b}}^{2}}$
ex $193.8161 \mathrm{~N}=250 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.3 \mathrm{~m}+6 \cdot \frac{54.5 \mathrm{~N}^{*} \mathrm{~m}}{(1.3 \mathrm{~m})^{2}}$
45) Thrust given Intrados Stresses on Arch Dam
$f \mathrm{f}=\mathrm{F} \cdot \mathrm{T}_{\mathrm{b}}-6 \cdot \frac{\mathrm{M}_{\mathrm{t}}}{\mathrm{T}_{\mathrm{b}}}$
ex $73.46154 \mathrm{~N}=250 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.3 \mathrm{~m}-6 \cdot \frac{54.5 \mathrm{~N}^{*} \mathrm{~m}}{1.3 \mathrm{~m}}$

Variables Used

- A Angle between Crown and Abundant Radii (Radian)
- D Diameter (Meter)
- E Elastic Modulus of Rock (Newton per Square Meter)
- F Thrust of Abutments (Newton)
- FC Thrust at Crown (Kilonewton)
- $\mathbf{F}_{\mathbf{s}}$ Shear Force (Newton)
- \mathbf{K}_{1} Constant K1
- K_{2} Constant K2
- K_{3} Constant K3
- $\mathbf{K}_{\mathbf{4}}$ Constant K4
- \mathbf{K}_{5} Constant K5
- M Cantilever Twisting Moment (Newton Meter)
- $\mathbf{M}_{\mathbf{t}}$ Moment acting on Arch Dam (Newton Meter)
- p Normal Radial Pressure
- P Thrust from Water (Kilonewton per Meter)
- $\mathbf{P}_{\mathbf{v}}$ Radial Pressure (Kilopascal per Square Meter)
- r Radius to Center Line of Arch (Meter)
- S Intrados Stresses (Newton per Square Meter)
- t Horizontal Thickness of an Arch (Meter)
- T Thickness of Circular Arch (Meter)
- $\mathbf{T}_{\mathbf{b}}$ Base Thickness (Meter)
- $\bar{\delta}$ Deflection due to Moments on Arch Dam (Meter)
- $\boldsymbol{\theta}$ Theta (Degree)
- σ_{e} Extrados Stress (Newton per Square Meter)
- Φ Angle of Rotation (Radian)

Constants, Functions, Measurements used

- Function: acos, acos(Number)

Inverse trigonometric cosine function

- Function: cos, $\cos ($ Angle)

Trigonometric cosine function

- Function: $\boldsymbol{\operatorname { s i n }}, \boldsymbol{\operatorname { s i n }}$ (Angle)

Trigonometric sine function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Pressure in Newton per Square Meter ($\mathrm{N} / \mathrm{m}^{2}$)

Pressure Unit Conversion

- Measurement: Energy in Newton Meter ($\mathrm{N}^{*} \mathrm{~m}$)

Energy Unit Conversion

- Measurement: Force in Newton (N), Kilonewton (kN)

Force Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$), Radian (rad)

Angle Unit Conversion

- Measurement: Surface Tension in Kilonewton per Meter (kN/m)

Surface Tension Unit Conversion

- Measurement: Torque in Newton Meter ($\mathrm{N}^{*} \mathrm{~m}$)

Torque Unit Conversion

- Measurement: Radial Pressure in Kilopascal per Square Meter ($\mathrm{kPa} / \mathrm{m}^{2}$)

Radial Pressure Unit Conversion

- Measurement: Stress in Newton per Square Meter ($\mathrm{N} / \mathrm{m}^{2}$) Stress Unit Conversion

Check other formula lists

- Arch Dams Formulas
- Buttress Dams Formulas
- Earth Dam and Gravity Dam Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

