
unitsconverters.com

Ellipsoid Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Ellipsoid Formulas

Ellipsoid

Axis of Ellipsoid ©

1) First Semi Axis of Ellipsoid
$f \mathrm{x} a=\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{~b} \cdot \mathrm{c}}$
ex $10.23139 \mathrm{~m}=\frac{3 \cdot 1200 \mathrm{~m}^{3}}{4 \cdot \pi \cdot 7 \mathrm{~m} \cdot 4 \mathrm{~m}}$
2) First Semi Axis of Ellipsoid given Surface Area
$f \mathbf{x} \mathbf{a}=\left(\frac{\left(3 \cdot\left(\frac{\mathrm{SA}}{4 \cdot \pi}\right)^{1.6075}\right)-(\mathrm{b} \cdot \mathrm{c})^{1.6075}}{\mathrm{~b}^{1.6075}+\mathrm{c}^{1.6075}}\right)^{\frac{1}{1.6075}}$

$$
\text { ex } 9.937577 \mathrm{~m}=\left(\frac{\left(3 \cdot\left(\frac{600 \mathrm{~m}^{2}}{4 \cdot \pi}\right)^{1.6075}\right)-(7 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}}{(7 \mathrm{~m})^{1.6075}+(4 \mathrm{~m})^{1.6075}}\right)^{\frac{1}{1.6075}}
$$

3) Second Semi Axis of Ellipsoid

$\mathrm{fx} \mathrm{b}=\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{a} \cdot \mathrm{c}}$
ex $7.161972 \mathrm{~m}=\frac{3 \cdot 1200 \mathrm{~m}^{3}}{4 \cdot \pi \cdot 10 \mathrm{~m} \cdot 4 \mathrm{~m}}$
4) Second Semi Axis of Ellipsoid given Surface Area
$f \mathbf{x} \mathrm{~b}=\left(\frac{\left(3 \cdot\left(\frac{\mathrm{SA}}{4 \cdot \pi}\right)^{1.6075}\right)-(\mathrm{a} \cdot \mathrm{c})^{1.6075}}{\mathrm{a}^{1.6075}+\mathrm{c}^{1.6075}}\right)^{\frac{1}{1.6075}}$
$\mathrm{ex} 6.949981 \mathrm{~m}=\left(\frac{\left(3 \cdot\left(\frac{600 \mathrm{~m}^{2}}{4 \cdot \pi}\right)^{1.6075}\right)-(10 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}}{(10 \mathrm{~m})^{1.6075}+(4 \mathrm{~m})^{1.6075}}\right)^{\frac{1}{1.6075}}$
5) Third Semi Axis of Ellipsoid
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{c}}=\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{a} \cdot \mathrm{b}}$
ex $4.092556 \mathrm{~m}=\frac{3 \cdot 1200 \mathrm{~m}^{3}}{4 \cdot \pi \cdot 10 \mathrm{~m} \cdot 7 \mathrm{~m}}$
6) Third Semi Axis of Ellipsoid given Surface Area
$f \mathbf{x} c=\left(\frac{\left(3 \cdot\left(\frac{\mathrm{SA}}{4 \cdot \pi}\right)^{1.6075}\right)-(\mathrm{a} \cdot \mathrm{b})^{1.6075}}{\mathrm{a}^{1.6075}+\mathrm{b}^{1.6075}}\right)^{\frac{1}{1.6075}}$
$\mathbf{e x} 3.944642 \mathrm{~m}=\left(\frac{\left(3 \cdot\left(\frac{600 \mathrm{~m}^{2}}{4 \cdot \pi}\right)^{1.6075}\right)-(10 \mathrm{~m} \cdot 7 \mathrm{~m})^{1.6075}}{(10 \mathrm{~m})^{1.6075}+(7 \mathrm{~m})^{1.6075}}\right)^{\frac{1}{1.6075}}$

Surface Area of Ellipsoid

7) Surface Area of Ellipsoid
$f x$
Open Calculator ©
$\mathrm{SA}=4 \cdot \pi \cdot\left(\frac{(\mathrm{a} \cdot \mathrm{b})^{1.6075}+(\mathrm{b} \cdot \mathrm{c})^{1.6075}+(\mathrm{a} \cdot \mathrm{c})^{1.6075}}{3}\right)^{\frac{1}{1.6075}}$
ex
$603.2371 \mathrm{~m}^{2}=4 \cdot \pi \cdot\left(\frac{(10 \mathrm{~m} \cdot 7 \mathrm{~m})^{1.6075}+(7 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}+(10 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}}{3}\right)^{\frac{1}{1.6075}}$
8) Surface Area of Ellipsoid given Volume, First, and Second Semi Axes
fx
Open Calculatores
$\mathrm{SA}=4 \cdot \pi \cdot\left(\frac{(\mathrm{a} \cdot \mathrm{b})^{1.6075}+\left(\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{a}}\right)^{1.6075}+\left(\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{~b}}\right)^{1.6075}}{3}\right)^{\frac{1}{1.6075}}$
ex
$608.6864 \mathrm{~m}^{2}=4 \cdot \pi \cdot\left(\frac{(10 \mathrm{~m} \cdot 7 \mathrm{~m})^{1.6075}+\left(\frac{3 \cdot 1200 \mathrm{~m}^{3}}{4 \cdot \pi \cdot 10 \mathrm{~m}}\right)^{1.6075}+\left(\frac{3 \cdot 1200 \mathrm{~m}^{3}}{4 \cdot \pi \cdot 7 \mathrm{~m}}\right)^{1.6075}}{3}\right)^{\frac{1}{1.6075}}$
9) Surface Area of Ellipsoid given Volume, First, and Third Semi Axes \longleftarrow

$$
\mathrm{SA}=4 \cdot \pi \cdot\left(\frac{\left(\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{c}}\right)^{1.6075}+\left(\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{a}}\right)^{1.6075}+(\mathrm{a} \cdot \mathrm{c})^{1.6075}}{3}\right)^{\frac{1}{1.6075}}
$$

ex

$613.7431 \mathrm{~m}^{2}=4 \cdot \pi \cdot\left(\frac{\left(\frac{3 \cdot 1200 \mathrm{~m}^{3}}{4 \cdot \pi \cdot 4 \mathrm{~m}}\right)^{1.6075}+\left(\frac{3 \cdot 1200 \mathrm{~m}^{3}}{4 \cdot \pi \cdot 10 \mathrm{~m}}\right)^{1.6075}+(10 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}}{3}\right)^{\frac{1}{1.6075}}$
10) Surface Area of Ellipsoid given Volume, Second, and Third Semi Axes
$\mathrm{SA}=4 \cdot \pi \cdot\left(\frac{\left(\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{c}}\right)^{1.6075}+(\mathrm{b} \cdot \mathrm{c})^{1.6075}+\left(\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{~b}}\right)^{1.6075}}{3}\right)^{\frac{1}{1.6075}}$

ex

$615.251 \mathrm{~m}^{2}=4 \cdot \pi \cdot\left(\frac{\left(\frac{3 \cdot 1200 \mathrm{~m}^{3}}{4 \cdot \pi \cdot 4 \mathrm{~m}}\right)^{1.6075}+(7 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}+\left(\frac{3 \cdot 1200 \mathrm{~m}^{3}}{4 \cdot \pi \cdot 7 \mathrm{~m}}\right)^{1.6075}}{3}\right)^{\frac{1}{1.6075}}$

Surface to Volume Ratio of Ellipsoid

11) Surface to Volume Ratio of Ellipsoid

ex $0.514329 \mathrm{~m}^{-1}=$
$\frac{3 \cdot\left(\frac{(10 \mathrm{~m} \cdot 7 \mathrm{~m})^{1.6075}+(7 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}+(10 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}}{3}\right)^{\frac{1}{1.6075}}}{10 \mathrm{~m} \cdot 7 \mathrm{~m} \cdot 4 \mathrm{~m}}$
12) Surface to Volume Ratio of Ellipsoid given Surface Area
$f \mathrm{fx} \mathrm{R}_{\mathrm{A} / \mathrm{V}}=\frac{\mathrm{SA}}{\frac{4}{3} \cdot \pi \cdot \mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c}}$
ex $0.511569 \mathrm{~m}^{-1}=\frac{600 \mathrm{~m}^{2}}{\frac{4}{3} \cdot \pi \cdot 10 \mathrm{~m} \cdot 7 \mathrm{~m} \cdot 4 \mathrm{~m}}$
13) Surface to Volume Ratio of Ellipsoid given Surface Area, First and Second Semi Axes

ex $0.518749 \mathrm{~m}^{-1}=$

$$
\frac{4 \cdot \pi \cdot 10 \mathrm{~m} \cdot 7 \mathrm{~m}}{3} \cdot\left(\frac{\left(3 \cdot\left(\frac{600 \mathrm{~m}^{2}}{4 \cdot \pi}\right)^{1.6075}\right)-(10 \mathrm{~m} \cdot 7 \mathrm{~m})^{1.6075}}{(10 \mathrm{~m})^{1.6075}+(7 \mathrm{~m})^{1.6075}}\right)^{\frac{1}{1.6075}}
$$

14) Surface to Volume Ratio of Ellipsoid given Surface Area, First and Third Semi Axis

15) Surface to Volume Ratio of Ellipsoid given Surface Area, Second and Third Semi Axes
$\mathrm{fx}_{\mathrm{x}} \mathrm{R}_{\mathrm{A} / \mathrm{V}}=\frac{\mathrm{SA}}{\frac{4 \cdot \pi \cdot \mathrm{~b} \cdot \mathrm{c}}{3} \cdot\left(\frac{\left(3 \cdot\left(\frac{\mathrm{SA}}{4 \cdot \pi}\right)^{1.6075}\right)-(\mathrm{b} \cdot \mathrm{c})^{1.6075}}{\mathrm{~b}^{1.6075}+\mathrm{c}^{1.6075}}\right)^{\frac{1}{1.6075}}}$
ex $0.514783 \mathrm{~m}^{-1}=$ $600 \mathrm{~m}^{2}$

$$
\frac{4 \cdot \pi \cdot 7 \mathrm{~m} \cdot 4 \mathrm{~m}}{3} \cdot\left(\frac{\left(3 \cdot\left(\frac{600 \mathrm{~m}^{2}}{4 \cdot \pi}\right)^{1.6075}\right)-(7 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}}{(7 \mathrm{~m})^{1.6075}+(4 \mathrm{~m})^{1.6075}}\right)^{\frac{1}{1.6075}}
$$

16) Surface to Volume Ratio of Ellipsoid given Volume

$$
\begin{aligned}
& \frac{4 \cdot \pi \cdot\left(\frac{(\mathrm{a} \cdot \mathrm{~b})^{1.6075}+(\mathrm{b} \cdot \mathrm{c})^{1.6075}+(\mathrm{a} \cdot \mathrm{c})^{1.6075}}{3}\right)^{\frac{1}{1.6075}}}{\mathrm{~V}} \\
& \text { 17) Surface to Volume Ratio of Ellipsoid given Volume, First and Second Semi Axes } \\
& \text { E } \\
& \mathrm{fx} \mathrm{R}_{\mathrm{A} / \mathrm{V}}=\square \mathrm{V} \\
& \text { ex } 0.507239 \mathrm{~m}^{-1}= \\
& \frac{4 \cdot \pi \cdot\left(\frac{(10 \mathrm{~m} \cdot 7 \mathrm{~m})^{1.6075}+\left(\frac{3.1200 \mathrm{~m}^{\mathrm{s}}}{4 \pi \cdot 1.1 \mathrm{~m}}\right)^{1.6075}+\left(\frac{3.1200 \mathrm{~m}^{\mathrm{s}}}{4 \pi \cdot 7 \mathrm{~m}}\right)^{1.6075}}{3}\right)^{\frac{1}{1.6075}}}{1200 \mathrm{~m}^{3}} \\
& 1200 \mathrm{~m}^{3}
\end{aligned}
$$

18) Surface to Volume Ratio of Ellipsoid given Volume, First and Third Semi Axes
```\(\longleftarrow\)
```

$$
\frac{4 \cdot \pi \cdot\left(\frac{\left(\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{c}}\right)^{1.6075}+\left(\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi \cdot \mathrm{a}}\right)^{1.6075}+(\mathrm{a} \cdot \mathrm{c})^{1.6075}}{3}\right)^{\frac{1}{1.6075}}}{\mathrm{~V}}
$$

$f_{\mathrm{x}} \mathrm{R}_{\mathrm{A} / \mathrm{V}}=$

$$
\frac{4 \cdot \pi \cdot\left(\frac{\left(\frac{3.1200 \mathrm{~m}^{3}}{4 \pi \cdot 4 \mathrm{~m}}\right)^{1.6075}+\left(\frac{3.1200 \mathrm{~m}^{3}}{4 \pi \cdot 10 \mathrm{~m}}\right)^{1.6075}+(10 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}}{3}\right)^{\frac{1}{1.6075}}}{1200 \mathrm{~m}^{3}}
$$

$0.511453 \mathrm{~m}^{-1}=$
19) Surface to Volume Ratio of Ellipsoid given Volume, Second and Third Semi Axes区

Open Calculator

Volume of Ellipsoid

20) Volume of Ellipsoid
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}=\frac{4}{3} \cdot \pi \cdot \mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c}$
ex $1172.861 \mathrm{~m}^{3}=\frac{4}{3} \cdot \pi \cdot 10 \mathrm{~m} \cdot 7 \mathrm{~m} \cdot 4 \mathrm{~m}$
21) Volume of Ellipsoid given Surface Area, First and Second Semi Axes

$f x$

$$
\mathrm{V}=\frac{4 \cdot \pi \cdot \mathrm{a} \cdot \mathrm{~b}}{3} \cdot\left(\frac{\left(3 \cdot\left(\frac{\mathrm{SA}}{4 \cdot \pi}\right)^{1.6075}\right)-(\mathrm{a} \cdot \mathrm{~b})^{1.6075}}{\mathrm{a}^{1.6075}+\mathrm{b}^{1.6075}}\right)^{\frac{1}{1.6075}}
$$

ex
$1156.629 \mathrm{~m}^{3}=\frac{4 \cdot \pi \cdot 10 \mathrm{~m} \cdot 7 \mathrm{~m}}{3} \cdot\left(\frac{\left(3 \cdot\left(\frac{600 \mathrm{~m}^{2}}{4 \cdot \pi}\right)^{1.6075}\right)-(10 \mathrm{~m} \cdot 7 \mathrm{~m})^{1.6075}}{(10 \mathrm{~m})^{1.6075}+(7 \mathrm{~m})^{1.6075}}\right)^{\frac{1}{1.6075}}$
22) Volume of Ellipsoid given Surface Area, First and Third Semi Axes

$$
\mathrm{V}=\frac{4 \cdot \pi \cdot \mathrm{a} \cdot \mathrm{c}}{3} \cdot\left(\frac{\left(3 \cdot\left(\frac{\mathrm{SA}}{4 \cdot \pi}\right)^{1.6075}\right)-(\mathrm{a} \cdot \mathrm{c})^{1.6075}}{\mathrm{a}^{1.6075}+\mathrm{c}^{1.6075}}\right)^{\frac{1}{1.6075}}
$$

ex

$1164.48 \mathrm{~m}^{3}=\frac{4 \cdot \pi \cdot 10 \mathrm{~m} \cdot 4 \mathrm{~m}}{3} \cdot\left(\frac{\left(3 \cdot\left(\frac{600 \mathrm{~m}^{2}}{4 \cdot \pi}\right)^{1.6075}\right)-(10 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}}{(10 \mathrm{~m})^{1.6075}+(4 \mathrm{~m})^{1.6075}}\right)^{\frac{1}{1.6075}}$
23) Volume of Ellipsoid given Surface Area, Second and Third Semi Axes

$$
\mathrm{V}=\frac{4 \cdot \pi \cdot \mathrm{~b} \cdot \mathrm{c}}{3} \cdot\left(\frac{\left(3 \cdot\left(\frac{\mathrm{SA}}{4 \cdot \pi}\right)^{1.6075}\right)-(\mathrm{b} \cdot \mathrm{c})^{1.6075}}{\mathrm{~b}^{1.6075}+\mathrm{c}^{1.6075}}\right)^{\frac{1}{1.6075}}
$$

ex $1165.54 \mathrm{~m}^{3}=\frac{4 \cdot \pi \cdot 7 \mathrm{~m} \cdot 4 \mathrm{~m}}{3} \cdot\left(\frac{\left(3 \cdot\left(\frac{600 \mathrm{~m}^{2}}{4 \cdot \pi}\right)^{1.6075}\right)-(7 \mathrm{~m} \cdot 4 \mathrm{~m})^{1.6075}}{(7 \mathrm{~m})^{1.6075}+(4 \mathrm{~m})^{1.6075}}\right)^{\frac{1}{1.6075}}$

Variables Used

- a First Semi Axis of Ellipsoid (Meter)
- b Second Semi Axis of Ellipsoid (Meter)
- C Third Semi Axis of Ellipsoid (Meter)
- $\mathbf{R}_{\mathbf{A} / \mathbf{V}}$ Surface to Volume Ratio of Ellipsoid (1 per Meter)
- SA Surface Area of Ellipsoid (Square Meter)
- V Volume of Ellipsoid (Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion
匹

- Measurement: Reciprocal Length in 1 per Meter (m^{-1})

Reciprocal Length Unit Conversion

Check other formula lists

- Anticube Formulas
- Antiprism Formulas
- Barrel Formulas
- Bent Cuboid Formulas
- Bicone Formulas
- Capsule Formulas
- Circular Hyperboloid Formulas
- Cuboctahedron Formulas
- Cut Cylinder Formulas
- Cut Cylindrical Shell Formulas
- Cylinder Formulas
- Cylindrical Shell Formulas
- Diagonally Halved Cylinder Formulas
- Disphenoid Formulas
- Double Calotte Formulas
- Double Point Formulas
- Ellipsoid Formulas
- Elliptic Cylinder Formulas
- Elongated Dodecahedron Formulas
- Flat End Cylinder Formulas
- Frustum of Cone Formulas
- Great Dodecahedron Formulas
- Great Icosahedron Formulas
- Great Stellated Dodecahedron Formulas
- Half Cylinder Formulas
- Half Tetrahedron Formulas
- Hemisphere Formulas
- Hollow Cuboid Formulas
- Hollow Cylinder Formulas
- Hollow Frustum Formulas
- Hollow Hemisphere Formulas
- Hollow Pyramid Formulas
- Hollow Sphere Formulas
- Ingot Formulas
- Obelisk Formulas
- Oblique Cylinder Formulas
- Oblique Prism Formulas
- Obtuse Edged Cuboid Formulas
- Oloid Formulas
- Paraboloid Formulas
- Parallelepiped Formulas
- Prismatoid Formulas
- Ramp Formulas
- Regular Bipyramid Formulas
- Rhombohedron Formulas
- Right Wedge Formulas
- Semi Ellipsoid Formulas
- Sharp Bent Cylinder Formulas $\sqrt{ }$
E. Skewed Three Edged Prism Formulas
- Small Stellated Dodecahedron Formulas
- Solid of Revolution Formulas
- Sphere Formulas
- Spherical Cap Formulas
- Spherical Corner Formulas
- Spherical Ring Formulas Ξ
- Spherical Sector Formulas
- Spherical Segment Formulas
- Spherical Wedge Formulas
- Square Pillar Formulas
- Star Pyramid Formulas
- Stellated Octahedron Formulas
- Toroid Formulas
- Torus Formulas
- Trirectangular Tetrahedron Formulas
- Truncated Rhombohedron Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

