

Hydroelectric Power Generation Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Hydroelectric Power Generation Formulas

Hydroelectric Power Generation ©

1) Flow Rate for Power obtained from Water Flow in Horsepower
$f \mathrm{fx} \mathrm{Q}_{\mathrm{t}}=\frac{\mathrm{P} \cdot 8.8}{\eta \cdot \mathrm{H}}$
Open Calculator
ex $0.460194 \mathrm{~m}^{3} / \mathrm{s}=\frac{170 \mathrm{~W} \cdot 8.8}{14 \cdot 232.2 \mathrm{~m}}$
2) Flow Rate given Power in Kilowatt
$f \mathrm{f} \mathrm{Q}_{\mathrm{t}}=\frac{\mathrm{P} \cdot 11.8}{\eta \cdot \mathrm{H}}$
Open Calculator
ex $0.617079 \mathrm{~m}^{3} / \mathrm{s}=\frac{170 \mathrm{~W} \cdot 11.8}{14 \cdot 232.2 \mathrm{~m}}$
3) Flow Rate given Power obtained from Water Flow in Horsepower
$f \mathrm{f} F=\frac{\mathrm{P} \cdot 550}{\eta \cdot \mathrm{H} \cdot \gamma_{\mathrm{w}}}$
Open Calculator [3
ex $0.002932 \mathrm{~m}^{3} / \mathrm{s}=\frac{170 \mathrm{~W} \cdot 550}{14 \cdot 232.2 \mathrm{~m} \cdot 9.81 \mathrm{kN} / \mathrm{m}^{3}}$
4) Flow Rate given Power obtained from Water Flow in Kilowatt
$\mathrm{fx} \mathrm{F}=\frac{\mathrm{P} \cdot 738}{\eta \cdot \mathrm{H} \cdot \gamma_{\mathrm{w}}}$
Open Calculator
$\mathrm{ex} 0.003934 \mathrm{~m}^{3} / \mathrm{s}=\frac{170 \mathrm{~W} \cdot 738}{14 \cdot 232.2 \mathrm{~m} \cdot 9.81 \mathrm{kN} / \mathrm{m}^{3}}$
5) Potential Energy of Volume of Water in Hydroelectric Power Generation $\boxed{\square}$
$f \mathrm{x} P \mathrm{PE}=\gamma_{\mathrm{w}} \cdot \mathrm{h}$
ex $117.72 \mathrm{~J}=9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 12 \mathrm{~m}$
6) Total Weight of Water given Potential Energy in Hydroelectric Power Generation

$$
f \mathrm{x} \gamma_{\mathrm{w}}=\frac{\mathrm{PE}}{\mathrm{~h}}
$$

ex $9.766667 \mathrm{kN} / \mathrm{m}^{3}=\frac{117.2 \mathrm{~J}}{12 \mathrm{~m}}$

$$
12 \mathrm{~m}
$$

Effective Head

7) Effective Head for Power in Kilowatt
$f x H=\frac{P \cdot 11.8}{Q_{t} \cdot \eta}$
ex $311.4907 \mathrm{~m}=\frac{170 \mathrm{~W} \cdot 11.8}{0.46 \mathrm{~m}^{3} / \mathrm{s} \cdot 14}$
8) Effective Head for Power obtained from Water Flow in Horsepower
$f \mathrm{H}=\frac{\mathrm{P} \cdot 8.8}{Q_{t} \cdot \eta}$
ex $232.2981 \mathrm{~m}=\frac{170 \mathrm{~W} \cdot 8.8}{0.46 \mathrm{~m}^{3} / \mathrm{s} \cdot 14}$

Efficiency of Turbine

9) Efficiency of Turbine and Generator for Power obtained from Water Flow in Horsepower
$f \mathbf{f x} \eta=\frac{P \cdot 8.8}{Q_{t} \cdot H}$
ex $14.00592=\frac{170 \mathrm{~W} \cdot 8.8}{0.46 \mathrm{~m}^{3} / \mathrm{s} \cdot 232.2 \mathrm{~m}}$
10) Efficiency of Turbine and Generator given Power in Kilowatt
$f \mathbf{f x}=\frac{\mathrm{P} \cdot 11.8}{Q_{t} \cdot H}$
Open Calculator
ex $18.78066=\frac{170 \mathrm{~W} \cdot 11.8}{0.46 \mathrm{~m}^{3} / \mathrm{s} \cdot 232.2 \mathrm{~m}}$
11) Efficiency of Turbine and Generator given Power obtained from Water Flow in Horsepower
$\eta=\frac{P \cdot 550}{Q_{t} \cdot H \cdot \gamma_{w}}$

Open Calculator
ex $89.2324=\frac{170 \mathrm{~W} \cdot 550}{0.46 \mathrm{~m}^{3} / \mathrm{s} \cdot 232.2 \mathrm{~m} \cdot 9.81 \mathrm{kN} / \mathrm{m}^{3}}$
12) Efficiency of turbine and generator given Power obtained from water flow in Kilowatt
$\mathrm{fx} \eta=\frac{\mathrm{P} \cdot 738}{\mathrm{~F} \cdot \mathrm{H} \cdot \gamma_{\mathrm{w}}}$
Open Calculator
ex $11.0155=\frac{170 \mathrm{~W} \cdot 738}{0.005 \mathrm{~m}^{3} / \mathrm{s} \cdot 232.2 \mathrm{~m} \cdot 9.81 \mathrm{kN} / \mathrm{m}^{3}}$

Power obtained from Water Flow

13) Power obtained from Water Flow in Horsepower

$$
f \mathrm{x} P=\frac{\eta \cdot \mathrm{Q}_{\mathrm{t}} \cdot \mathrm{H} \cdot \gamma_{\mathrm{w}}}{550}
$$

ex $26.67193 \mathrm{~W}=\frac{14 \cdot 0.46 \mathrm{~m}^{3} / \mathrm{s} \cdot 232.2 \mathrm{~m} \cdot 9.81 \mathrm{kN} / \mathrm{m}^{3}}{550}$
14) Power obtained from Water Flow in Kilowatt
$f \mathrm{fx}=\frac{\mathrm{H} \cdot \mathrm{Q}_{\mathrm{t}} \cdot \mathrm{H} \cdot \gamma_{\mathrm{w}}}{738}$
Open Calculator
ex $329.6818 \mathrm{~W}=\frac{232.2 \mathrm{~m} \cdot 0.46 \mathrm{~m}^{3} / \mathrm{s} \cdot 232.2 \mathrm{~m} \cdot 9.81 \mathrm{kN} / \mathrm{m}^{3}}{738}$
15) Power obtained from Water Flow in Kilowatt given Effective Head
$f \mathrm{fx}=\frac{\eta \cdot \mathrm{Q}_{\mathrm{t}} \cdot \mathrm{H}}{11.8}$
Open Calculator
ex $126.7261 \mathrm{~W}=\frac{14 \cdot 0.46 \mathrm{~m}^{3} / \mathrm{s} \cdot 232.2 \mathrm{~m}}{11.8}$

Variables Used

- F Flow rate (Cubic Meter per Second)
- h Vertical Distance Water can Fall (Meter)
- H Effective Head (Meter)
- P Hydroelectric Power (Watt)
- PE Potential Energy (Joule)
- $\mathbf{Q}_{\mathbf{t}}$ Discharge from Dam (Cubic Meter per Second)
- $\mathbf{Y}_{\mathbf{w}}$ Unit Weight of Water (Kilonewton per Cubic Meter)
- $\boldsymbol{\eta}$ Efficiency of Turbine

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Energy in Joule (J)

Energy Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion

Check other formula lists

- Buoyancy And Floatation Formulas
- Culverts Formulas
- Equations of Motion and Energy Equation Formulas
- Flow of Compressible Fluids Formulas
- Flow Over Notches and Weirs Formulas
- Fluid Pressure and Its Measurement Formulas
- Fundamentals of Fluid Flow Formulas ${ }^{2}$
- Hydroelectric Power Generation Formulas ${ }^{2}$
- Hydrostatic Forces on Surfaces Formulas
- Impact of Free Jets Formulas
- Impulse Momentum Equation and its Applications Formulas
- Liquids in Relative Equilibrium Formullas
- Most Economical or Most

Efficient Section of Channel Formullas

- Non-uniform Flow in Channels Formulas ${ }^{3}$
- Properties of Fluid Formulas
- Thermal Expansion of Pipe and Pipe Stresses Formulas $ك$
- Uniform Flow in Channels Formulas ${ }^{2}$
- Water Power Engineering Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

