calculatoratoz.com

Pentagonal Cupola Formulas

Calculators!

Examples!

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Pentagonal Cupola Formulas

Pentagonal Cupola ©

Edge Length of Pentagonal Cupola

1) Edge Length of Pentagonal Cupola given Height

ex $9.510565 \mathrm{~m}=\frac{5 \mathrm{~m}}{\sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}}$
2) Edge Length of Pentagonal Cupola given Surface to Volume Ratio

$$
\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})
$$

Open Calculator
f. $l_{\mathrm{e}}=$

$$
\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot \mathrm{R}_{\mathrm{A} / \mathrm{V}}
$$

$\mathrm{l}_{\mathrm{e}}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot \mathrm{R}_{\mathrm{A} / \mathrm{V}}}$
$10.19143 \mathrm{~m}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot 0.7 \mathrm{~m}^{-1}}$
3) Edge Length of Pentagonal Cupola given Total Surface Area
ex $10.00611 \mathrm{~m}=$

$$
\sqrt{\frac{1660 \mathrm{~m}^{2}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}}
$$

4) Edge Length of Pentagonal Cupola given Volume
$f \times l_{e}=\left(\frac{V}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}}$
$\operatorname{ex} 9.965393 \mathrm{~m}=\left(\frac{2300 \mathrm{~m}^{3}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}}$

Height of Pentagonal Cupola

5) Height of Pentagonal Cupola 〔

$f \mathrm{fx}=\mathrm{l}_{\mathrm{e}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
ex $5.257311 \mathrm{~m}=10 \mathrm{~m} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
6) Height of Pentagonal Cupola given Surface to Volume Ratio
$f x$
$\mathrm{h}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot \mathrm{R}_{\mathrm{A} / \mathrm{V}}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
ex $5.357954 \mathrm{~m}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot 0.7 \mathrm{~m}^{-1}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
7) Height of Pentagonal Cupola given Total Surface Area
$\mathrm{h}=\sqrt{\frac{\mathrm{TSA}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
ex $5.260521 \mathrm{~m}=\sqrt{\frac{1660 \mathrm{~m}^{2}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
8) Height of Pentagonal Cupola given Volume
$f x h=\left(\frac{V}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
$\operatorname{ex} 5.239117 \mathrm{~m}=\left(\frac{2300 \mathrm{~m}^{3}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$

Surface Area of Pentagonal Cupola

Total Surface Area of Pentagonal Cupola

9) Total Surface Area of Pentagonal Cupola
$\mathrm{fx} \operatorname{TSA}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot \mathrm{l}_{\mathrm{e}}^{2}$
ex $1657.975 \mathrm{~m}^{2}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot(10 \mathrm{~m})^{2}$
10) Total Surface Area of Pentagonal Cupola given Height
$\mathrm{TSA}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{\mathrm{h}^{2}}{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}\right)$
ex $1499.652 \mathrm{~m}^{2}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{(5 \mathrm{~m})^{2}}{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}\right)$
11) Total Surface Area of Pentagonal Cupola given Surface to Volume Ratio
$\mathrm{TSA}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})}\right.$
ex
$1722.061 \mathrm{~m}^{2}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot 0.7 \mathrm{~m}^{-1}}\right.$
12) Total Surface Area of Pentagonal Cupola given Volume

$$
\mathrm{TSA}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{\mathrm{V}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{2}{3}}
$$

ex $1646.519 \mathrm{~m}^{2}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{2300 \mathrm{~m}^{3}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{2}{3}}$

Surface to Volume Ratio of Pentagonal Cupola

13) Surface to Volume Ratio of Pentagonal Cupola

$$
\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})
$$

ff $R_{A / V}=$

$$
\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot l_{\mathrm{e}}
$$

$$
\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot 10 \mathrm{~m}}
$$

14) Surface to Volume Ratio of Pentagonal Cupola given Height

$$
\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\mathrm{h}}{\sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}}\right)}
$$

f. $R_{\mathrm{A} / \mathrm{V}}=$
ex $0.750114 \mathrm{~m}^{-1}=$

$$
=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5})}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{5 \mathrm{~m}}{\sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}}\right)}
$$

15) Surface to Volume Ratio of Pentagonal Cupola given Total Surface Area

$$
\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot \sqrt{\frac{1}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}}}
$$

f. $R_{\mathrm{A} / \mathrm{V}}=$
ex $0.712965 \mathrm{~m}^{-1}=$

$$
\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1660 \mathrm{~m}^{2}}{5} \cdot(5+(4 \cdot \sqrt{5})) \cdot \sqrt{\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{}}}
$$

16) Surface to Volume Ratio of Pentagonal Cupola given Volume
$R_{A / V}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\mathrm{V}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}}}$

$$
\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{2300 \mathrm{~m}^{3}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}}}
$$

Volume of Pentagonal Cupola ©

17) Volume of Pentagonal Cupola

$f \times \mathrm{V}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot l_{\mathrm{e}}^{3}$
ex $2324.045 \mathrm{~m}^{3}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot(10 \mathrm{~m})^{3}$
18) Volume of Pentagonal Cupola given Height

Ex $V=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\mathrm{h}}{\sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}}\right)^{3}$
ex $1999.234 \mathrm{~m}^{3}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{5 \mathrm{~m}}{\sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}}\right)^{3}$
19) Volume of Pentagonal Cupola given Surface to Volume Ratio
$f x$
Open Calculator
$\mathrm{V}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot \mathrm{R}_{\mathrm{A} / \mathrm{V}}}\right)^{3}$
$\operatorname{ex} 2460.088 \mathrm{~m}^{3}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot 0.7 \mathrm{~m}^{-1}}\right)^{3}$
20) Volume of Pentagonal Cupola given Total Surface Area
fx
$\mathrm{V}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\mathrm{TSA}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}\right)^{\frac{3}{2}}$
ex $2328.304 \mathrm{~m}^{3}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{1660 \mathrm{~m}^{2}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}\right)^{\frac{3}{2}}$

Variables Used

- \mathbf{h} Height of Pentagonal Cupola (Meter)
- $\mathbf{I}_{\mathbf{e}}$ Edge Length of Pentagonal Cupola (Meter)
- $\mathbf{R}_{\mathbf{A} / \mathbf{V}}$ Surface to Volume Ratio of Pentagonal Cupola (1 per Meter)
- TSA Total Surface Area of Pentagonal Cupola (Square Meter)
- V Volume of Pentagonal Cupola (Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: cosec, cosec(Angle)

Trigonometric cosecant function

- Function: sec, sec(Angle)

Trigonometric secant function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter $\left(\mathrm{m}^{3}\right)$

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Reciprocal Length in 1 per Meter $\left(\mathrm{m}^{-1}\right)$

Reciprocal Length Unit Conversion

Check other formula lists

- Pentagonal Cupola Formulas
- Triangular Cupola Formulas
- Square Cupola Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

