calculatoratoz.com
unitsconverters.com

Cupola pentagonale Formule

Calcolatrici!

Esempi!

Segnalibro calculatoratoz.com, unitsconverters.com

La più ampia copertura di calcolatricie in crescita - 30.000+ calcolatrici!
Calcola con un'unità diversa per ogni variabile - Nella conversione di unità costruita!
La più ampia raccolta di misure e unità - 250+ misurazioni!

Sentiti libero di CONDIVIDERE questo documento con i tuoi amici!

Si prega di lasciare il tuo feedback qui...

Lista di 20 Cupola pentagonale Formule

Cupola pentagonale \mathbb{C}

Lunghezza del bordo della cupola pentagonale

1) Lunghezza del bordo della cupola pentagonale data la superficie totale
$\mathrm{fx}_{\mathrm{e}}=\sqrt{\frac{\text { TSA }}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}}$
ex $10.00611 \mathrm{~m}=$

$$
\sqrt{\frac{1660 \mathrm{~m}^{2}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}}
$$

2) Lunghezza del bordo della cupola pentagonale data l'altezza
$f x l_{\mathrm{e}}=\frac{\mathrm{h}}{\sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}}$
ex $9.510565 \mathrm{~m}=\frac{5 \mathrm{~m}}{\sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}}$
3) Lunghezza del bordo della cupola pentagonale dato il rapporto superficie/volume

$$
1_{\mathrm{e}}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot \mathrm{R}_{\mathrm{A} / \mathrm{V}}}
$$

ex $10.19143 \mathrm{~m}=$

$$
\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot 0.7 \mathrm{~m}^{-1}}
$$

4) Lunghezza del bordo della cupola pentagonale dato il volume
$f \times l_{e}=\left(\frac{V}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}}$
ex $9.965393 \mathrm{~m}=\left(\frac{2300 \mathrm{~m}^{3}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}}$

Altezza della cupola pentagonale

5) Altezza della Cupola Pentagonale

$f \mathrm{fx}=\mathrm{l}_{\mathrm{e}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
ex $5.257311 \mathrm{~m}=10 \mathrm{~m} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
6) Altezza della cupola pentagonale data la superficie totale
$f x$
$\mathrm{h}=\sqrt{\frac{\mathrm{TSA}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
$\mathrm{ex} 5.260521 \mathrm{~m}=\sqrt{\frac{1660 \mathrm{~m}^{2}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
7) Altezza della cupola pentagonale dato il rapporto superficie/volume
$\mathrm{h}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot \mathrm{R}_{\mathrm{A} / \mathrm{V}}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
$\operatorname{ex} 5.357954 \mathrm{~m}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot 0.7 \mathrm{~m}^{-1}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
8) Altezza della cupola pentagonale dato il volume
$f \mathbf{f x}=\left(\frac{\mathrm{V}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$
$\operatorname{ex} 5.239117 \mathrm{~m}=\left(\frac{2300 \mathrm{~m}^{3}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}} \cdot \sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}$

Superficie della cupola pentagonale

Superficie totale della cupola pentagonale

9) Superficie totale della cupola pentagonale
fx $\mathrm{TSA}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot \mathrm{l}_{\mathrm{e}}^{2}$
ex $1657.975 \mathrm{~m}^{2}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot(10 \mathrm{~m})^{2}$
10) Superficie totale della cupola pentagonale data l'altezza
$\operatorname{TSA}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{\mathrm{h}^{2}}{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}\right)$
ex $1499.652 \mathrm{~m}^{2}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{(5 \mathrm{~m})^{2}}{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}\right)$
11) Superficie totale della cupola pentagonale dato il rapporto superficie/volume
fx
Apri Calcolatrice [
$\mathrm{TSA}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})}\right.$
ex
$1722.061 \mathrm{~m}^{2}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot 0.7 \mathrm{~m}^{-1}}\right.$
12) Superficie totale della cupola pentagonale dato il volume

$$
\mathrm{TSA}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{\mathrm{V}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{2}{3}}
$$

ex $1646.519 \mathrm{~m}^{2}=\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))}) \cdot\left(\frac{2300 \mathrm{~m}^{3}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{2}{3}}$

Rapporto superficie/volume della cupola pentagonale

13) Rapporto superficie/volume della cupola pentagonale

$$
\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})
$$

fx $R_{A / V}=$

$$
\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot l_{\mathrm{e}}
$$

$0.7134 \mathrm{~m}^{-1}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot 10 \mathrm{~m}}$
14) Rapporto superficie/volume della cupola pentagonale data la superficie totale

$$
f \mathrm{f} \mathrm{R}_{\mathrm{A} / \mathrm{V}}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot \sqrt{\frac{\mathrm{TSA}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}}}
$$

15) Rapporto superficie/volume della cupola pentagonale data l'altezza

$$
\operatorname{ex} 0.750114 \mathrm{~m}^{-1}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{5 \mathrm{~m}}{\sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}}\right)}
$$

16) Rapporto superficie/volume della cupola pentagonale dato il volume
$f \mathbf{f} \mathrm{R}_{\mathrm{A} / \mathrm{V}}=\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\mathrm{V}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}}}$

$$
\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{2300 \mathrm{~m}^{3}}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5}))}\right)^{\frac{1}{3}}}
$$

Volume della cupola pentagonale

17) Volume della Cupola Pentagonale
$f \mathrm{f} V=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot \mathrm{l}_{\mathrm{e}}^{3}$
ex $2324.045 \mathrm{~m}^{3}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot(10 \mathrm{~m})^{3}$
18) Volume della cupola pentagonale data altezza
$\mathrm{fx} \mathrm{V}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\mathrm{h}}{\sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}}\right)^{3}$
ex $1999.234 \mathrm{~m}^{3}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{5 \mathrm{~m}}{\sqrt{1-\left(\frac{1}{4} \cdot \operatorname{cosec}\left(\frac{\pi}{5}\right)^{2}\right)}}\right)^{3}$
19) Volume della cupola pentagonale data la superficie totale
$f x$
$\mathrm{V}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\mathrm{TSA}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}\right)^{\frac{3}{2}}$
ex $2328.304 \mathrm{~m}^{3}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{1660 \mathrm{~m}^{2}}{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}\right)^{\frac{3}{2}}$
20) Volume della cupola pentagonale dato il rapporto superficie/volume
$\mathrm{V}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot \mathrm{R}_{\mathrm{A} / \mathrm{V}}}\right)^{3}$
$\mathbf{e x} 2460.088 \mathrm{~m}^{3}=\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot\left(\frac{\frac{1}{4} \cdot(20+(5 \cdot \sqrt{3})+\sqrt{5 \cdot(145+(62 \cdot \sqrt{5}))})}{\frac{1}{6} \cdot(5+(4 \cdot \sqrt{5})) \cdot 0.7 \mathrm{~m}^{-1}}\right)^{3}$

Variabili utilizzate

- \mathbf{h} Altezza della cupola pentagonale (metro)
- I_{e} Lunghezza del bordo della cupola pentagonale (metro)
- $\mathbf{R}_{\mathbf{A} / \mathbf{V}}$ Rapporto superficie/volume della cupola pentagonale (1 al metro)
- TSA Superficie totale della cupola pentagonale (Metro quadrato)
- V Volume della cupola pentagonale (Metro cubo)

Costanti, Funzioni, Misure utilizzate

- Costante: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Funzione: cosec, cosec(Angle)

Trigonometric cosecant function

- Funzione: sec, sec(Angle)

Trigonometric secant function

- Funzione: sqrt, sqrt(Number)

Square root function

- Misurazione: Lunghezza in metro (m)

Lunghezza Conversione unità

- Misurazione: Volume in Metro cubo $\left(\mathrm{m}^{3}\right)$

Volume Conversione unità

- Misurazione: La zona in Metro quadrato (m^{2})

La zona Conversione unità

- Misurazione: Lunghezza reciproca in 1 al metro $\left(\mathrm{m}^{-1}\right)$

Lunghezza reciproca Conversione unità

Controlla altri elenchi di formule

- Cupola pentagonale Formule
- Cupola triangolare Formule
- Cupola quadrata Formule

Sentiti libero di CONDIVIDERE questo documento con i tuoi amici!

PDF Disponibile in

English Spanish French German Russian Italian Portuguese Polish Dutch

