
calculatoratoz.com

unitsconverters.com

Threaded Bolted Joints Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 34 Threaded Bolted Joints Formulas

Threaded Bolted Joints ©

Bolt Dimensions ©

1) Core Diameter of Bolt given Maximum Tensile Stress in Bolt
$\mathrm{fx} \mathrm{d}_{\mathrm{c}}=\sqrt{\frac{\mathrm{P}_{\mathrm{tb}}}{\left(\frac{\pi}{4}\right) \cdot \sigma t_{\max }}}$
$\mathrm{ex} 12.02255 \mathrm{~mm}=\sqrt{\frac{9990 \mathrm{~N}}{\left(\frac{\pi}{4}\right) \cdot 88 \mathrm{~N} / \mathrm{mm}^{2}}}$
2) Core Diameter of Bolt given Shear Area of Nut
$f_{x} d_{c}=\frac{A}{\pi \cdot h}$
ex $11.98967 \mathrm{~mm}=\frac{226 \mathrm{~mm}^{2}}{\pi \cdot 6 \mathrm{~mm}}$
3) Core Diameter of Bolt given Tensile Force on Bolt in Shear
$\mathrm{fx} \mathrm{d}_{\mathrm{c}}=\mathrm{P}_{\mathrm{tb}} \cdot \frac{\mathrm{f}_{\mathrm{s}}}{\pi \cdot \mathrm{S}_{\mathrm{sy}} \cdot \mathrm{h}}$
Open Calculator
$\mathrm{ex} 11.99063 \mathrm{~mm}=9990 \mathrm{~N} \cdot \frac{3}{\pi \cdot 132.6 \mathrm{~N} / \mathrm{mm}^{2} \cdot 6 \mathrm{~mm}}$
4) Core Diameter of Bolt given Tensile Force on Bolt in Tension
$\mathrm{fx} \mathrm{d}_{\mathrm{c}}=\sqrt{\frac{\mathrm{P}_{\mathrm{tb}}}{\frac{\pi}{4} \cdot \frac{\mathrm{~S}_{\mathrm{yt}}}{\mathrm{f}_{\mathrm{s}}}}}$
Open Calculator
ex $11.98854 \mathrm{~mm}=\sqrt{\frac{9990 \mathrm{~N}}{\frac{\pi}{4} \cdot \frac{265.5 \mathrm{~N} / \mathrm{mm}^{2}}{3}}}$
5) Nominal Diameter of Bolt given Diameter of Hole inside Bolt
$f \mathrm{fx}=\sqrt{d_{1}^{2}+d_{c}^{2}}$
Open Calculator
$\mathrm{ex} 15 \mathrm{~mm}=\sqrt{(9 \mathrm{~mm})^{2}+(12 \mathrm{~mm})^{2}}$
6) Nominal Diameter of Bolt given Height of Standard Nut
$\mathrm{fx} \mathrm{d}=\frac{\mathrm{h}}{0.8}$
ex $7.5 \mathrm{~mm}=\frac{6 \mathrm{~mm}}{0.8}$
7) Nominal Diameter of Bolt given Stiffness of Bolt
$f \times d=\sqrt{\frac{\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right) \cdot 1 \cdot 4}{\mathrm{E} \cdot \pi}}$
ex $14.97437 \mathrm{~mm}=\sqrt{\frac{3.17 \mathrm{E}^{\wedge} 5 \mathrm{~N} / \mathrm{mm} \cdot 115 \mathrm{~mm} \cdot 4}{207000 \mathrm{~N} / \mathrm{mm}^{2} \cdot \pi}}$
8) Nominal Diameter of Bolt given Wrench Torque
$f \mathrm{x} \mathrm{d}=\frac{\mathrm{M}_{\mathrm{t}}}{0.2 \cdot \mathrm{P}_{\mathrm{i}}}$
Open Calculator
ex $15 \mathrm{~mm}=\frac{49500 \mathrm{~N}^{*} \mathrm{~mm}}{0.2 \cdot 16500 \mathrm{~N}}$

Joint Analysis ©

9) Amount of Compression in Parts Joined by Bolt $\sqrt{ }$
$f \mathrm{fx} \delta_{\mathrm{c}}=\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{k}}$
Open Calculator
ex $11 \mathrm{~mm}=\frac{16500 \mathrm{~N}}{1500 \mathrm{~N} / \mathrm{mm}}$
10) Elongation of Bolt under Action of Pre Load
$f \mathbf{f x} \delta_{\mathrm{b}}=\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{k}_{\mathrm{b}}}{ }^{\prime}$
Open Calculator
ex $0.05205 \mathrm{~mm}=\frac{16500 \mathrm{~N}}{3.17 \mathrm{E}^{\wedge} 5 \mathrm{~N} / \mathrm{mm}}$
11) Factor of Safety given Tensile Force on Bolt in Tension
$f \mathrm{f} \mathrm{f}_{\mathrm{s}}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{c}}^{2} \cdot \frac{\mathrm{~S}_{\mathrm{yt}}}{\mathrm{P}_{\mathrm{tb}}}$
ex $3.00574=\frac{\pi}{4} \cdot(12 \mathrm{~mm})^{2} \cdot \frac{265.5 \mathrm{~N} / \mathrm{mm}^{2}}{9990 \mathrm{~N}}$
12) Maximum Tensile Stress in Bolt
$\mathrm{fx} \sigma \mathrm{t}_{\max }=\frac{\mathrm{P}_{\mathrm{tb}}}{\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{c}}^{2}}$
Open Calculator

$$
\text { ex } 88.33099 \mathrm{~N} / \mathrm{mm}^{2}=\frac{9990 \mathrm{~N}}{\frac{\pi}{4} \cdot(12 \mathrm{~mm})^{2}}
$$

13) Primary Shear Force of Eccentrically Loaded Bolted Connection
$f_{x}\left(\mathrm{P}_{1}{ }^{\prime}\right)=\frac{\mathrm{P}}{\mathrm{n}}$
Open Calculator
$\mathrm{ex} 3000 \mathrm{~N}=\frac{12000 \mathrm{~N}}{4}$
14) Yield Strength of Bolt in Shear given Tensile Force on Bolt in Shear
$f \mathrm{fx} \mathrm{S}_{\mathrm{sy}}=\mathrm{P}_{\mathrm{tb}} \cdot \frac{\mathrm{f}_{\mathrm{s}}}{\pi \cdot \mathrm{d}_{\mathrm{c}} \cdot \mathrm{h}}$
Open Calculator 〔
ex $132.4965 \mathrm{~N} / \mathrm{mm}^{2}=9990 \mathrm{~N}$.
$\frac{3}{\pi \cdot 12 \mathrm{~mm} \cdot 6 \mathrm{~mm}}$
15) Yield Strength of Bolt in Tension given Tensile Force on Bolt in Shear E
$f \mathrm{x} \mathrm{S}_{\mathrm{yt}}=\frac{2 \cdot \mathrm{P}_{\mathrm{tb}} \cdot \mathrm{f}_{\mathrm{s}}}{\pi \cdot \mathrm{d}_{\mathrm{c}} \cdot \mathrm{h}}$
ex $264.993 \mathrm{~N} / \mathrm{mm}^{2}=\frac{2 \cdot 9990 \mathrm{~N} \cdot 3}{\pi \cdot 12 \mathrm{~mm} \cdot 6 \mathrm{~mm}}$
16) Yield Strength of Bolt in Tension given Tensile Force on Bolt in Tension
$\mathrm{fx} \mathrm{S}_{\mathrm{yt}}=4 \cdot \mathrm{P}_{\mathrm{tb}} \cdot \frac{\mathrm{f}_{\mathrm{s}}}{\pi \cdot \mathrm{d}_{\mathrm{c}}^{2}}$

$$
\mathbf{e x} 264.993 \mathrm{~N} / \mathrm{mm}^{2}=4 \cdot 9990 \mathrm{~N} \cdot \frac{3}{\pi \cdot(12 \mathrm{~mm})^{2}}
$$

Load and Strength Characteristics ©

17) Imaginary Force at Center of Gravity of Bolted Joint given Primary Shear Force
$f \mathrm{fx}=\left(\mathrm{P}_{1}{ }^{\prime}\right) \cdot \mathrm{n}$
ex $12000 \mathrm{~N}=3000 \mathrm{~N} \cdot 4$
18) Number of Bolts given Primary Shear Force
$\mathrm{fx} \mathrm{n}=\frac{\mathrm{P}}{\mathrm{P}_{1},}$
Open Calculator
ex $4=\frac{12000 \mathrm{~N}}{3000 \mathrm{~N}}$
19) Pre Load in Bolt given Amount of Compression in Parts Joined by Bolt W
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}_{\mathrm{i}}=\delta_{\mathrm{c}} \cdot \mathrm{k}$
ex $16500 \mathrm{~N}=11 \mathrm{~mm} \cdot 1500 \mathrm{~N} / \mathrm{mm}$
20) Pre Load in Bolt given Elongation of Bolt
$f \mathrm{fx} \mathrm{P}_{\mathrm{i}}=\delta_{\mathrm{b}} \cdot\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right)$
Open Calculator
ex $15850 \mathrm{~N}=0.05 \mathrm{~mm} \cdot 3.17 \mathrm{E}^{\wedge} 5 \mathrm{~N} / \mathrm{mm}$
21) Pre Load in Bolt given Wrench Torque
$f \mathrm{fx} \mathrm{P}_{\mathrm{i}}=\frac{\mathrm{M}_{\mathrm{t}}}{0.2 \cdot \mathrm{~d}}$
Open Calculator
ex $16500 \mathrm{~N}=\frac{49500 \mathrm{~N}^{*} \mathrm{~mm}}{0.2 \cdot 15 \mathrm{~mm}}$
22) Resultant Load on Bolt given Pre Load and External Load
fx $\mathrm{P}_{\mathrm{b}}=\mathrm{P}_{\mathrm{i}}+\Delta \mathrm{P}$
ex $19000 \mathrm{~N}=16500 \mathrm{~N}+2500 \mathrm{~N}$
23) Stiffness of Bolt given Thickness of Parts Joined by Bolt
$\mathrm{fx}_{\mathrm{x}}\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right)=\frac{\pi \cdot \mathrm{d}^{2} \cdot \mathrm{E}}{4 \cdot 1}$
ex $318086.3 \mathrm{~N} / \mathrm{mm}=\frac{\pi \cdot(15 \mathrm{~mm})^{2} \cdot 207000 \mathrm{~N} / \mathrm{mm}^{2}}{4 \cdot 115 \mathrm{~mm}}$
24) Tensile Force on Bolt given Maximum Tensile Stress in Bolt
$f \mathrm{f} \mathrm{P}_{\mathrm{tb}}=\sigma \mathrm{t}_{\max } \cdot \frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{c}}^{2}$
ex $9952.566 \mathrm{~N}=88 \mathrm{~N} / \mathrm{mm}^{2} \cdot \frac{\pi}{4} \cdot(12 \mathrm{~mm})^{2}$
25) Tensile Force on Bolt in Shear
$f \mathrm{x} \mathrm{P}_{\mathrm{tb}}=\pi \cdot \mathrm{d}_{\mathrm{c}} \cdot \mathrm{h} \cdot \frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{f}_{\mathrm{s}}}$
Open Calculator
ex $9997.804 \mathrm{~N}=\pi \cdot 12 \mathrm{~mm} \cdot 6 \mathrm{~mm} \cdot \frac{132.6 \mathrm{~N} / \mathrm{mm}^{2}}{3}$
26) Tensile Force on Bolt in Tension
$f \mathrm{x} \mathrm{P}_{\mathrm{tb}}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{c}}^{2} \cdot \frac{\mathrm{~S}_{\mathrm{yt}}}{\mathrm{f}_{\mathrm{s}}}$
ex $10009.11 \mathrm{~N}=\frac{\pi}{4} \cdot(12 \mathrm{~mm})^{2} \cdot \frac{265.5 \mathrm{~N} / \mathrm{mm}^{2}}{3}$
27) Thickness of Parts Held Together by Bolt given Stiffness of Bolt $工$
$f \times l=\frac{\pi \cdot d^{2} \cdot \mathrm{E}}{4 \cdot\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right)}$
Open Calculator
ex $115.3941 \mathrm{~mm}=\frac{\pi \cdot(15 \mathrm{~mm})^{2} \cdot 207000 \mathrm{~N} / \mathrm{mm}^{2}}{4 \cdot 3.17 \mathrm{E}^{\wedge} 5 \mathrm{~N} / \mathrm{mm}}$
28) Wrench Torque Required to Create Required Pre Load
$f \times \mathrm{M}_{\mathrm{t}}=0.2 \cdot \mathrm{P}_{\mathrm{i}} \cdot \mathrm{d}$
Open Calculator
ex $49500 \mathrm{~N}^{*} \mathrm{~mm}=0.2 \cdot 16500 \mathrm{~N} \cdot 15 \mathrm{~mm}$
29) Young's Modulus of Bolt given Stiffness of Bolt
$f_{\mathrm{x}} \mathrm{E}=\frac{\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right) \cdot 1 \cdot 4}{\mathrm{~d}^{2} \cdot \pi}$
Open Calculator
ex $206293.1 \mathrm{~N} / \mathrm{mm}^{2}=\frac{3.17 \mathrm{E}^{\wedge} 5 \mathrm{~N} / \mathrm{mm} \cdot 115 \mathrm{~mm} \cdot 4}{(15 \mathrm{~mm})^{2} \cdot \pi}$

Nut Dimensions

30) Diameter of Hole Inside Bolt Σ

$f x d_{1}=\sqrt{d^{2}-d_{c}^{2}}$
ex $9 \mathrm{~mm}=\sqrt{(15 \mathrm{~mm})^{2}-(12 \mathrm{~mm})^{2}}$
31) Height of Nut given Shear Area of Nut
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{h}=\frac{\mathrm{A}}{\pi \cdot \mathrm{d}_{\mathrm{c}}}}$
ex $5.994836 \mathrm{~mm}=\frac{226 \mathrm{~mm}^{2}}{\pi \cdot 12 \mathrm{~mm}}$
32) Height of Nut given Strength of Bolt in Shear
$f \mathrm{x}=\mathrm{P}_{\mathrm{tb}} \cdot \frac{\mathrm{f}_{\mathrm{s}}}{\pi \cdot \mathrm{d}_{\mathrm{c}} \cdot \mathrm{S}_{\mathrm{sy}}}$
Open Calculator ©
ex $5.995316 \mathrm{~mm}=9990 \mathrm{~N} \cdot \frac{3}{\pi \cdot 12 \mathrm{~mm} \cdot 132.6 \mathrm{~N} / \mathrm{mm}^{2}}$
33) Height of Standard Nut
$\mathrm{fx} h=0.8 \cdot \mathrm{~d}$
Open Calculator 〔
ex $12 \mathrm{~mm}=0.8 \cdot 15 \mathrm{~mm}$
34) Shear Area of Nut
$f \mathrm{x} \quad \mathrm{A}=\pi \cdot \mathrm{d}_{\mathrm{c}} \cdot \mathrm{h}$
ex $226.1947 \mathrm{~mm}^{2}=\pi \cdot 12 \mathrm{~mm} \cdot 6 \mathrm{~mm}$

Variables Used

- $\Delta \mathbf{P}$ Load due to External Force on Bolt (Newton)
- A Shear Area of Nut (Square Millimeter)
- d Nominal Bolt Diameter (Millimeter)
- \mathbf{d}_{1} Diameter of Hole inside Bolt (Millimeter)
- $\mathbf{d}_{\mathbf{c}}$ Core Diameter of Bolt (Millimeter)
- δ_{b} Elongation of Bolt (Millimeter)
- E Modulus of Elasticity of Bolt (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{s}}$ Factor of Safety of Bolted Joint
- h Height of Nut (Millimeter)
- \mathbf{k} Combined Stiffness of Bolt (Newton per Millimeter)
- $\mathbf{k}_{\mathbf{b}}$ ' Stiffness of Bolt (Newton per Millimeter)
- I Total Thickness of Parts held together by Bolt (Millimeter)
- $\mathbf{M}_{\mathbf{t}}$ Wrench Torque for Bolt Tightening (Newton Millimeter)
- \mathbf{n} Number of Bolts in Bolted Joint
- P Imaginary Force on Bolt (Newton)
- \mathbf{P}_{1} ' Primary Shear Force on Bolt (Newton)
- $\mathbf{P}_{\mathbf{b}}$ Resultant Load on Bolt (Newton)
- $\mathbf{P}_{\mathbf{i}}$ Pre Load in Bolt (Newton)
- $\mathbf{P}_{\mathbf{t b}}$ Tensile Force in Bolt (Newton)
- $\mathbf{S}_{\mathbf{s y}}$ Shear Yield Strength of Bolt (Newton per Square Millimeter)
- S_{yt} Tensile Yield Strength of Bolt (Newton per Square Millimeter)
- $\boldsymbol{\delta}_{\mathbf{c}}$ Amount of Compression of Bolted Joint (Millimeter)
- $\boldsymbol{\sigma t}_{\text {max }}$ Maximum Tensile Stress in Bolt (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion $\sqrt{ }$

- Measurement: Area in Square Millimeter (mm^{2}) Area Unit Conversion
- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Torque in Newton Millimeter (N*mm)

Torque Unit Conversion

- Measurement: Stiffness Constant in Newton per Millimeter (N/mm) Stiffness Constant Unit Conversion
- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Design of Clamp and Muff Coupling Formulas
- Design of Cotter Joint Formulas
- Design of Knuckle Joint Formulas ${ }^{2}$
- Packing Formulas
- Retaining Rings and Circlips Formulas
- Riveted Joints Formulas
- Seals Formulas
- Threaded Bolted Joints Formulas
- Welded Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/8/2024 | 10:36:53 AM UTC
Please leave your feedback here...

