
calculatoratoz.com

unitsconverters.com

Gravitation Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Gravitation Formulas

Gravitation

1) Gravitational Field Intensity

$$
\begin{aligned}
& f \mathrm{E}=\frac{\mathrm{F}}{\mathrm{~m}} \\
& \mathrm{ex}_{\mathrm{x}} 0.075758 \mathrm{~N} / \mathrm{Kg}=\frac{2.5 \mathrm{~N}}{33 \mathrm{~kg}}
\end{aligned}
$$

2) Gravitational Field Intensity due to Point Mass

$$
\mathrm{fx} \mathrm{E}=\frac{[\mathrm{G} \cdot] \cdot \mathrm{m} \cdot \mathrm{~m}_{\mathrm{o}}}{\mathrm{r}}
$$

ex $1.8 \mathrm{E}^{\wedge}-10 \mathrm{~N} / \mathrm{Kg}=\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg} \cdot 0.5 \mathrm{~kg}}{6 \mathrm{~m}}$
3) Gravitational Potential Energy

$$
\mathrm{fx}_{\mathrm{x}} \mathrm{U}=-\frac{\left[\mathrm{G}_{\cdot}\right] \cdot \mathrm{m}_{1} \cdot \mathrm{~m}_{2}}{\mathrm{r}_{\mathrm{c}}}
$$

$\mathbf{e x}-1.5 \mathrm{E}^{\wedge}-10 \mathrm{~J}=-\frac{[\mathrm{G} .] \cdot 14 \mathrm{~kg} \cdot 16 \mathrm{~kg}}{102 \mathrm{~m}}$
4) Time Period of Satellite
$\mathbf{f x} \mathrm{T}=\left(\frac{2 \cdot \pi}{[\text { Earth-R }]}\right) \cdot \sqrt{\frac{([\text { Earth } \mathrm{R}]+\mathrm{h})^{3}}{\mathrm{~g}}}$
ex $1.407245 \mathrm{~h}=\left(\frac{2 \cdot \pi}{[\text { Earth-R }]}\right) \cdot \sqrt{\frac{([\text { Earth }-\mathrm{R}]+13 \mathrm{~m})^{3}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}}$
5) Universal Law of Gravitation
$f \mathbf{F}=\frac{[\mathrm{G} \cdot] \cdot \mathrm{m}_{1} \cdot \mathrm{~m}_{2}}{\mathrm{r}_{\mathrm{c}}^{2}}$
ex $1.4 \mathrm{E}^{\wedge}-12 \mathrm{~N}=\frac{[\mathrm{G} .] \cdot 14 \mathrm{~kg} \cdot 16 \mathrm{~kg}}{(102 \mathrm{~m})^{2}}$

Gravitational Field ©

6) Gravitational Field of Ring $\boxed{\boxed{ }}$

$f \times I=-\frac{[G .] \cdot m \cdot a}{\left(r_{\text {ring }}^{2}+a^{2}\right)^{\frac{3}{2}}}$

$$
\mathrm{ex}-3.4 \mathrm{E}^{\wedge}-15 \mathrm{~N} / \mathrm{Kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg} \cdot 4 \mathrm{~m}}{\left((5 \mathrm{~m})^{2}+(4 \mathrm{~m})^{2}\right)^{\frac{3}{2}}}
$$

7) Gravitational Field of Ring given Angle at any Point Outside Ring $ك$
$f \mathbf{f x}=-\frac{[G .] \cdot m \cdot \cos (\theta)}{\left(a^{2}+r_{\text {ring }}^{2}\right)^{2}}$
Open Calculator
ex $-1.1 \mathrm{E}^{\wedge}-12 \mathrm{~N} / \mathrm{Kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg} \cdot \cos \left(30^{\circ}\right)}{\left((4 \mathrm{~m})^{2}+(5 \mathrm{~m})^{2}\right)^{2}}$
8) Gravitational Field of Thin Circular Disc
$f \mathbf{x} I=-\frac{2 \cdot[\mathrm{G} .] \cdot \mathrm{m} \cdot(1-\cos (\theta))}{\mathrm{r}_{\mathrm{c}}^{2}}$
Open Calculator
$\mathrm{ex}-5.7 \mathrm{E}^{\wedge}-14 \mathrm{~N} / \mathrm{Kg}=-\frac{2 \cdot[\mathrm{G} .] \cdot 33 \mathrm{~kg} \cdot\left(1-\cos \left(30^{\circ}\right)\right)}{(102 \mathrm{~m})^{2}}$
9) Gravitational Field when Point is Inside of Non Conducting Solid Sphere $\boxed{\square}$
$\mathrm{fx} \mathrm{I}=-\frac{[\mathrm{G} \cdot] \cdot \mathrm{m} \cdot \mathrm{a}}{\mathrm{R}^{3}}$
Open Calculator
ex $-4.5 \mathrm{E}^{\wedge}-9 \mathrm{~N} / \mathrm{Kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg} \cdot 4 \mathrm{~m}}{(1.25 \mathrm{~m})^{3}}$
10) Gravitational Field when Point is Outside of Conducting Solid Sphere U
$f_{x} I=-\frac{[G \cdot] \cdot m}{a^{2}}$
ex $-1.4 \mathrm{E}^{\wedge}-10 \mathrm{~N} / \mathrm{Kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg}}{(4 \mathrm{~m})^{2}}$
11) Gravitational Field when Point is Outside of Non Conducting Solid Sphere
$f_{x} I=-\frac{[G \cdot] \cdot m}{a^{2}}$
ex $-1.4 \mathrm{E}^{\wedge}-10 \mathrm{~N} / \mathrm{Kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg}}{(4 \mathrm{~m})^{2}}$

Gravitational Potential ©

12) Gravitational Potential
$f_{\mathrm{x}} \mathrm{V}=-\frac{[\mathrm{G} \cdot] \cdot \mathrm{m}}{\mathrm{S}_{\text {body }}}$
ex $-2.9 \mathrm{E}^{\wedge}-9 \mathrm{~J} / \mathrm{kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg}}{0.75 \mathrm{~m}}$

13) Gravitational Potential of Ring

$\mathrm{fx} \mathrm{V}=-\frac{[\mathrm{G} .] \cdot \mathrm{m}}{\sqrt{\mathrm{r}_{\mathrm{ring}}^{2}+\mathrm{a}^{2}}}$

$$
\mathrm{ex}-3.4 \mathrm{E}^{\wedge}-12 \mathrm{~J} / \mathrm{kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg}}{\sqrt{(5 \mathrm{~m})^{2}+(4 \mathrm{~m})^{2}}}
$$

14) Gravitational Potential of Thin Circular Disc

$$
\frac{2 \cdot[\mathrm{G} .] \cdot 33 \mathrm{~kg} \cdot\left(\sqrt{(4 \mathrm{~m})^{2}+(1.25 \mathrm{~m})^{2}}-4 \mathrm{~m}\right)}{(1.25 \mathrm{~m})^{2}}
$$

15) Gravitational Potential when Point is Inside of Conducting Solid Sphere
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}=-\frac{[\mathrm{G} .] \cdot \mathrm{m}}{\mathrm{R}}$
$\mathrm{ex}-1.8 \mathrm{E}^{\wedge}-9 \mathrm{~J} / \mathrm{kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg}}{1.25 \mathrm{~m}}$
16) Gravitational Potential when Point is Inside of Non Conducting Solid Sphere
$f \mathrm{x} V=-\frac{[\mathrm{G} .] \cdot \mathrm{m} \cdot\left(3 \cdot \mathrm{r}_{\mathrm{c}}^{2}-\mathrm{a}^{2}\right)}{2 \cdot \mathrm{R}^{3}}$
ex $-1.8 \mathrm{E}^{\wedge}-5 \mathrm{~J} / \mathrm{kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg} \cdot\left(3 \cdot(102 \mathrm{~m})^{2}-(4 \mathrm{~m})^{2}\right)}{2 \cdot(1.25 \mathrm{~m})^{3}}$
17) Gravitational Potential when Point is Outside of Conducting Solid Sphere
$f \mathrm{fx} V=-\frac{[\mathrm{G} .] \cdot \mathrm{m}}{\mathrm{a}}$
Open Calculator
ex $-5.5 \mathrm{E}^{\wedge}-10 \mathrm{~J} / \mathrm{kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg}}{4 \mathrm{~m}}$
18) Gravitational Potential when Point is Outside of Non Conducting Solid Sphere
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}=-\frac{[\mathrm{G} .] \cdot \mathrm{m}}{\mathrm{a}}$
ex $-5.5 \mathrm{E}^{\wedge}-10 \mathrm{~J} / \mathrm{kg}=-\frac{[\mathrm{G} .] \cdot 33 \mathrm{~kg}}{4 \mathrm{~m}}$

Variation of Acceleration due to Gravity ©

19) Variation of Acceleration due to Gravity on Altitude
$f \mathrm{f} \mathrm{g}_{\mathrm{v}}=\mathrm{g} \cdot\left(1-\frac{2 \cdot \mathrm{~h}}{[\text { Earth-R] }]}\right)$
Open Calculator
ex $9.79996 \mathrm{~m} / \mathrm{s}^{2}=9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot\left(1-\frac{2 \cdot 13 \mathrm{~m}}{[\text { Earth-R] }}\right)$
20) Variation of Acceleration due to Gravity on Depth
$f \times g_{v}=g \cdot\left(1-\frac{D}{[\text { Earth }-R]}\right)$
Open Calculator
ex $9.799995 \mathrm{~m} / \mathrm{s}^{2}=9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot\left(1-\frac{3 \mathrm{~m}}{[\text { Earth-R] }]}\right)$
21) Variation of Acceleration on Surface of Earth due to Gravity Effect
$\mathrm{fx} \mathrm{g}_{\mathrm{v}}=\mathrm{g} \cdot\left(1-\frac{[\text { Earth }-\mathrm{R}] \cdot \omega}{\mathrm{g}}\right)$
Open Calculator
ex $-12742007.8 \mathrm{~m} / \mathrm{s}^{2}=9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot\left(1-\frac{[\text { Earth-R] } \cdot 2 \mathrm{rad} / \mathrm{s}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)$

Variables Used

- a Distance from Center to Point (Meter)
- D Depth (Meter)
- E Gravitational Field Intensity (Newton per Kilogram)
- F Force (Newton)
- \mathbf{g} Acceleration due to Gravity (Meter per Square Second)
- $\mathbf{g}_{\mathbf{v}}$ Variation of Acceleration due to Gravity (Meter per Square Second)
- h Altitude (Meter)
- I Gravitational Field (Newton per Kilogram)
- m Mass (Kilogram)
- \mathbf{m}_{1} Mass 1 (Kilogram)
- $\mathbf{m}_{\mathbf{2}}$ Mass 2 (Kilogram)
- $\mathbf{m}_{\mathbf{O}}$ Test Mass (Kilogram)
- r Distance between Two Bodies (Meter)
- R Radius (Meter)
- $\mathbf{r}_{\mathbf{c}}$ Distance between Centers (Meter)
- $\mathbf{r}_{\text {ring }}$ Radius of Ring (Meter)
- $\mathbf{S}_{\text {body }}$ Displacement of Body (Meter)
- T Time period of Satellite (Hour)
- U Gravitational Potential Energy (Joule)
- V Gravitational Potential (Joule per Kilogram)
- $\boldsymbol{\theta}$ Theta (Degree)
- $\boldsymbol{\omega}$ Angular Velocity (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [Earth-R], 6371.0088 Kilometer

Earth mean radius

- Constant: [G.], 6.67408E-11 * Meter ${ }^{3} /$ Kiogram Second ${ }^{2}$ Gravitational constant
- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Time in Hour (h)

Time Unit Conversion

- Measurement: Acceleration in Meter per Square Second (m/s²)

Acceleration Unit Conversion

- Measurement: Energy in Joule (J)

Energy Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Angular Velocity in Radian per Second (rad/s) Angular Velocity Unit Conversion
- Measurement: Gravitational Potential in Joule per Kilogram (J/kg) Gravitational Potential Unit Conversion
- Measurement: Gravitational Field Intensity in Newton per Kilogram (N/Kg)
Gravitational Field Intensity Unit Conversion

Check other formula lists

- Current Electricity Formulas
- Elasticity \& Simple Harmonic Motion(SHM) Formulas
- Gravitation Formulas
- Microscopes and Telescopes Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

