

Current Electricity Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 30 Current Electricity Formulas

Current Electricity

Basics of Current Electricity

1) Current Density given Electric Current and Area

Open Calculator

$$0.402299 \mathrm{A/mm^2} = rac{2.1 \mathrm{A}}{5.22 \mathrm{mm^2}}$$

2) Current Density given Resistivity

Open Calculator 🚰

$$ext{ex} \ 35.29412 ext{A/mm}^2 = rac{600 ext{V/m}}{0.017 \Omega^* ext{mm}}$$

3) Drift Speed

$$V_{
m d} = rac{{
m E} \cdot {f au} \cdot {
m [Charge-e]}}{2 \cdot {
m [Mass-e]}}$$

Open Calculator

$$oxed{ex} 2.6 ext{E^15mm/s} = rac{600 ext{V/m} \cdot 0.05 ext{s} \cdot [ext{Charge-e}]}{2 \cdot [ext{Mass-e}]}$$

4) Drift Speed given Cross-Sectional Area

 $\left[\mathbf{V}_{\mathrm{d}} = rac{\mathbf{r}}{\mathrm{e}^{ ext{-}} \cdot \left[\mathrm{Charge-e} \right] \cdot \mathrm{A}}
ight]$

Open Calculator 2

 $ext{ex} 1.9 ext{E^26mm/s} = rac{2.1 ext{A}}{5 \cdot [ext{Charge-e}] \cdot 14 ext{mm}^2}$

5) Electric Current given Charge and Time

fx $m I = rac{q}{T_{Total}}$

 $0.00375A = \frac{0.3C}{80s}$

6) Electric Current given Drift Velocity

Open Calculator 2

Open Calculator

Open Calculator 2

fx $I = n \cdot [ext{Charge-e}] \cdot A \cdot V_d$

ex $1.6E^-27A = 7 \cdot [Charge-e] \cdot 14mm^2 \cdot 0.1mm/s$

7) Electric Field

 $\mathbf{fx} ig| \mathbf{E} = rac{\Delta \mathbf{V}}{1} ig|$

$$\Delta V$$

$$=$$
 $20V/m = \frac{18V}{0.9m}$

8) Electromotive Force when Battery is Charging

fx $V_{
m electromotive} = \epsilon + I \cdot R$

Open Calculator 🖸

- $\textbf{ex} \ 33.3 \text{V} = 1.8 \text{V} + 2.1 \text{A} \cdot 15 \Omega$
- 9) Electromotive Force when Battery is Discharging
- $V_{
 m electromotive} = \epsilon I \cdot R$

Open Calculator

 $\texttt{ex} \ \texttt{-}29.7 \text{V} = 1.8 \text{V} - 2.1 \text{A} \cdot 15 \Omega$

Energy and Power

10) Heat Energy given Electric Potential Difference and Electric Current

 $\mathbf{f}_{\mathbf{X}} \mathbf{Q} = \Delta \mathbf{V} \cdot \mathbf{I} \cdot \mathbf{T}_{\mathrm{Total}}$

Open Calculator 🚰

- $\textbf{ex} \ 3024 \text{W} = 18 \text{V} \cdot 2.1 \text{A} \cdot 80 \text{s}$
- 11) Heat Energy given Electric Potential Difference and Resistance 🗗

Open Calculator

ex $1728W = (18V)^2 \cdot \frac{80s}{15\Omega}$

12) Heat Generated through Resistance

 $\mathbf{f}\mathbf{x} = \mathbf{I}^2 \cdot \mathbf{R} \cdot \mathbf{T}_{\mathrm{Total}}$

Open Calculator

 $\texttt{ex} \ 5292 \text{W} = (2.1 \text{A})^2 \cdot 15\Omega \cdot 80 \text{s}$

13) Power given Electric Current and Resistance

 $\mathbf{f}_{\mathbf{X}} [\mathrm{P} = \mathrm{I}^2 \cdot \mathrm{R}]$

Open Calculator

 $= 17.23857W = (.9577A)^2 \cdot 18.7950\Omega$

14) Power given Electric Potential Difference and Electric Current

fx $P = \Delta V \cdot I$

Open Calculator 🚰

 $16.99918W = 17.75V \cdot .9577A$

15) Power given Electric Potential Difference and Resistance

 $\mathbf{F} = rac{\Delta V^2}{R}$

Open Calculator

$$ext{ex} 16.7631 ext{W} = rac{\left(17.75 ext{V}
ight)^2}{18.7950 \Omega}$$

Open Calculator

Open Calculator

Open Calculator

Open Calculator

Resistance

16) Equivalent Resistance in Parallel

$$extbf{R}_{ ext{eq}} = \left(rac{1}{ ext{R}} + rac{1}{\Omega}
ight)^{-1}$$

$$\left(\frac{1}{R} + \frac{1}{\Omega}\right)$$

$$extbf{ex} \left[11.53846\Omega = \left(rac{1}{15\Omega} + rac{1}{50\Omega}
ight)^{-1}
ight]$$

17) Equivalent Resistance in Series 🗗

18) Internal Resistance using Potentiometer 🗗

$$ag{12.5\Omega} = rac{1500 ext{mm} - 1200 ext{mm}}{1200 ext{mm}} \cdot 50\Omega$$

19) Resistance
$$\mathbb{R} = \frac{\rho \cdot 1}{\Lambda}$$

$$ag{1.092857\Omega}=rac{0.017\Omega^* ext{mm}\cdot 0.9 ext{m}}{14 ext{mm}^2}$$

Open Calculator 2

Open Calculator

Open Calculator G

Open Calculator

20) Resistance of Wire

 $\left| \mathbf{f} \mathbf{x}
ight| \mathrm{R} =
ho \cdot \left| \frac{\mathrm{L}}{\Delta}
ight|$

 $1500 \mathrm{mm}$ ex $1.821429\Omega = 0.017\Omega*mm$. $14 \mathrm{mm}^2$

21) Resistance on Stretching of Wire

 $\left| \mathbf{R} \right| \mathbf{R} = rac{\Omega \cdot \mathbf{L}^2}{\left(\mathbf{l}_2
ight)^2}
ight|$

 $ag{78.125}\Omega = rac{50\Omega \cdot (1500 ext{mm})^2}{(1200 ext{mm})^2}$ 22) Resistivity of Material

 $ho = rac{2 \cdot [ext{Mass-e}]}{ ext{n} \cdot {[ext{Charge-e}]}^2 \cdot au}$

 $\mathbf{ex} \ 2\mathrm{E^11}\Omega^*\mathrm{mm} = rac{2\cdot[\mathrm{Mass-e}]}{7\cdot[\mathrm{Charge-e}]^2\cdot0.05\mathrm{s}}$

23) Temperature Dependence of Resistance 🗹

$\mathbf{K} = \mathrm{R}_{\mathrm{ref}} \cdot (1 + lpha \cdot \Delta \mathrm{T})$

ex $1602.5\Omega=2.5\Omega\cdot(1+16\,^\circ\mathrm{C}^{-_1}\cdot40\mathrm{K})$

Voltage and Current Measuring Instruments 🚰

24) Current in Potentiometer

$$I = rac{\mathbf{x} \cdot \mathbf{L}}{\mathrm{R}}$$

Open Calculator 🖸

$$\boxed{114 \mathrm{A} = \frac{1140 \mathrm{V/m} \cdot 1500 \mathrm{mm}}{15\Omega}}$$

25) EMF of Unknown Cell using Potentiometer

Open Calculator

$$=$$
 $2.5 \text{V} = \frac{6 \text{V} \cdot 1500 \text{mm}}{1200 \text{mm}}$

26) Metre Bridge

Open Calculator

Open Calculator

fx
$$V = I \cdot R$$

ex
$$31.5\mathrm{V} = 2.1\mathrm{A} \cdot 15\Omega$$

28) Potential Difference through Voltmeter 🚰

fx $\Delta V = I_G \cdot R + I_G \cdot R_G$

Open Calculator

 $extbf{ex}$ $38.25 ext{V} = 1.5 ext{A} \cdot 15\Omega + 1.5 ext{A} \cdot 10.5\Omega$

29) Potential Gradient through Potentiometer

 $\mathbf{x} = rac{\Delta \mathrm{V} - \mathrm{V_B}}{\mathrm{L}}$

Open Calculator

 $0.666667 ext{V/m} = rac{18 ext{V} - 17 ext{V}}{1500 ext{mm}}$

30) Shunt in Ammeter

 $m R_{sh} = R_G \cdot rac{I_G}{I - I_G}$

Open Calculator 🗗

ex $26.25\Omega=10.5\Omega\cdotrac{1.5 ext{A}}{2.1 ext{A}-1.5 ext{A}}$

Variables Used

- ∆T Change in Temperature (Kelvin)
- A Cross-Sectional Area (Square Millimeter)
- Acond Area of Conductor (Square Millimeter)
- **E** Electric Field (Volt per Meter)
- e Number of Electrons
- I Electric Current (Ampere)
- | Electric Current (Ampere)
- I_G Electric Current through Galvanometer (Ampere)
- J Electric Current Density (Ampere per Square Millimeter)
- I Length of Conductor (Meter)
- L Length (Millimeter)
- 1₂ Final Length (Millimeter)
- n Number of Free Charge Particles per Unit Volume
- P Power (Watt)
- **q** Charge (Coulomb)
- Q Heat Rate (Watt)
- R Resistance (Ohm)
- R Resistance (Ohm)
- Reg Equivalent Resistance (Ohm)
- RG Resistance through Galvanometer (Ohm)
- Rref Resistance at Reference Temperature (Ohm)
- R_{sh} Shunt (Ohm)

- T_{Total} Total Time Taken (Second)
- V Voltage (Volt)
- **V**_B Electric Potential Diff through other Terminal (*Volt*)
- V_d Drift Speed (Millimeter per Second)
- Velectromotive Electromotive Voltage (Volt)
- X Potential Gradient (Volt per Meter)
- α Temperature Coefficient of Resistance (Per Degree Celsius)
- **ΔV** Electric Potential Difference (Volt)
- ΔV Electric Potential Difference (Volt)
- E Electromotive Force (Volt)
- ε EMF of Unknown Cell using Potentiometer (Volt)
- p Resistivity (Ohm Millimeter)
- **Ω** Final Resistance (Ohm)
- τ Relaxation time (Second)

Constants, Functions, Measurements used

- Constant: [Charge-e], 1.60217662E-19 Charge of electron
- Constant: [Mass-e], 9.10938356E-31 Mass of electron
- Measurement: Length in Meter (m), Millimeter (mm)
 Length Unit Conversion
- Measurement: Time in Second (s)
 Time Unit Conversion
- Measurement: Electric Current in Ampere (A)
 Electric Current Unit Conversion
- Measurement: Temperature in Kelvin (K)
 Temperature Unit Conversion
- Measurement: Area in Square Millimeter (mm²)
 Area Unit Conversion
- Measurement: Speed in Millimeter per Second (mm/s)
 Speed Unit Conversion
- Measurement: Electric Charge in Coulomb (C)
 Electric Charge Unit Conversion
- Measurement: Power in Watt (W)
 Power Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω) Electric Resistance Unit Conversion
- Measurement: Surface Current Density in Ampere per Square Millimeter (A/mm²)
 - Surface Current Density Unit Conversion 💪

- Measurement: Electric Field Strength in Volt per Meter (V/m)

 Electric Field Strength Unit Conversion
- Measurement: Electric Potential in Volt (V)

 Electric Potential Unit Conversion
- Measurement: Electric Resistivity in Ohm Millimeter (Ω*mm)
 Electric Resistivity Unit Conversion
- Measurement: Temperature Coefficient of Resistance in Per Degree Celsius (°C⁻¹)

Temperature Coefficient of Resistance Unit Conversion

Check other formula lists

- Current Electricity Formulas
- Elasticity & Simple Harmonic Motion(SHM) Formulas
- Gravitation Formulas
- Microscopes and Telescopes
 Formulas
- Optics Formulas
- Tribology Formulas
- Wave Optics Formulas
- Waves And Sound Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/15/2024 | 8:19:09 AM UTC

Please leave your feedback here...

