

Stresses at Bends Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Stresses at Bends Formulas

Stresses at Bends 🖪

1) Angle of Bend given Buttress Resistance

Open Calculator 🚰

$$egin{align} egin{align} eg$$

$$\boxed{ \mathbf{ex} \ 36.0446^{\circ} = 2 \cdot a \sin \Bigg(\frac{1500 \mathrm{kN}}{ \big(2 \cdot 13 \mathrm{m}^2 \big) \cdot \bigg(\Big(\frac{9.81 \mathrm{kN/m}^3 \cdot \big(13.47 \mathrm{m/s} \big)^2}{[\mathrm{g}]} \Big) + 4.97 \mathrm{kN/m}^2 \bigg) } \Bigg) }$$

2) Angle of Bend given Head of Water and Buttress Resistance

$$oldsymbol{eta} heta_{
m b} = 2 \cdot a \sin \Biggl(rac{{
m P_{BR}}}{\left(2 \cdot {
m A_{cs}}
ight) \cdot \left(\left(rac{\gamma_{
m water} \cdot \left({
m V_w}
ight)^2}{\left[{
m g}
ight]}
ight) + \left(\gamma_{
m water} \cdot {
m H_{liquid}}
ight) } \Biggr)
ight)$$

Open Calculator G

3) Area of Section of Pipe given Buttress Resistance

$$\boxed{\mathbf{K}} \mathbf{A}_{cs} = \frac{P_{BR}}{(2) \cdot \left(\left(\frac{\gamma_{water} \cdot (V_w)^2}{[g]} \right) + p_i \right) \cdot \sin \left(\frac{\theta_b}{2} \right)}$$

$$= \frac{1500 kN}{(2) \cdot \left(\left(\frac{9.81 kN/m^3 \cdot \left(13.47 m/s \right)^2}{[g]} \right) + 72.01 kN/m^2 \right) \cdot \sin\left(\frac{36.0^\circ}{2} \right) }$$

4) Area of Section of Pipe given Head of Water 🗗

 $\mathbf{A}_{\mathrm{cs}} = rac{\overline{T_{\mathrm{tkn}}}}{\left(\gamma_{\mathrm{water}} \cdot H_{\mathrm{liquid}}
ight) + \left(rac{\gamma_{\mathrm{water}} \cdot \left(V_{\mathrm{fw}}
ight)^{2}}{\left[\mathrm{g}
ight]}
ight)}$

Open Calculator 🗗

$$\boxed{13.16246 m^2 = \frac{482.7 kN}{\left(9.81 kN/m^3 \cdot 0.46 m\right) + \left(\frac{9.81 kN/m^3 \cdot (5.67 m/s)^2}{[g]}\right)}}$$

5) Area of Section of Pipe given Head of Water and Buttress Resistance

 $\mathbf{A}_{cs} = \frac{P_{BR}}{(2) \cdot \left(\left(\frac{\gamma_{water} \cdot (V_w)^2}{[g]} \right) + \left(\gamma_{water} \cdot H_{liquid} \right) \right) \cdot sin\left(\frac{\theta_b}{2} \right)}$

Open Calculator

6) Area of Section of Pipe given Total Tension in Pipe

 $\mathbf{K} egin{equation} \mathbf{K} \mathbf{A}_{cs} = \dfrac{\mathbf{T}_{tkn}}{\left(P_{wt}
ight) + \left(rac{\gamma_{water} \cdot \left(V_{fw}
ight)^2}{[g]}
ight)} \end{aligned}$

Open Calculator 🗗

$$\boxed{ 13.00031 \text{m}^2 = \frac{482.7 \text{kN}}{ \left(4.97 \text{kN/m}^2 \right) + \left(\frac{9.81 \text{kN/m}^3 \cdot \left(5.67 \text{m/s} \right)^2}{[\text{g}]} \right) }$$

7) Buttress Resistance using Angle of Bend 🗹

 $ext{P}_{BR} = (2 \cdot A_{cs}) \cdot \left(\left(\left(\gamma_{water} \cdot \left(rac{V_{fw}^2}{[g]}
ight)
ight) + p_i
ight) \cdot \sin \left(rac{ heta_b}{2}
ight)
ight)$

Open Calculator

$$\boxed{ 836.9469 \text{kN} = (2 \cdot 13 \text{m}^2) \cdot \left(\left(\left(9.81 \text{kN/m}^3 \cdot \left(\frac{(5.67 \text{m/s})^2}{[\text{g}]} \right) \right) + 72.01 \text{kN/m}^2 \right) \cdot \sin \left(\frac{36.0 \, ^\circ}{2} \right) \right) }$$

8) Buttress Resistance using Head of Water

 $P_{BR} = \left((2 \cdot A_{cs}) \cdot \left(\left(\frac{\gamma_{water} \cdot \left(V_{fw}^2 \right)}{[g]} \right) + (\gamma_{water} \cdot H) \right) \cdot \sin \left(\frac{\theta_b}{2} \right) \right)$

Open Calculator

ex

$$\boxed{1440.655 \text{kN} = \left((2 \cdot 13 \text{m}^2) \cdot \left(\left(\frac{9.81 \text{kN/m}^3 \cdot \left(\left(5.67 \text{m/s} \right)^2 \right)}{[\text{g}]} \right) + \left(9.81 \text{kN/m}^3 \cdot 15 \text{m} \right) \right) \cdot \sin \left(\frac{36.0^\circ}{2} \right) \right)}$$

9) Head of Water given Buttress Resistance

 $\mathbf{H} = \left(\frac{\left(\frac{P_{BR}}{(2 \cdot A_{cs}) \cdot sin\left(\frac{\theta_{b}}{2}\right)} - \left(\frac{\gamma_{water} \cdot V_{fw}^{2}}{[g]}\right) \right)}{\gamma_{water}} \right)$

Open Calculator

$$= \left(\frac{\left(\frac{1500 kN}{(2 \cdot 13 m^2) \cdot sin\left(\frac{36.0^{\circ}}{2} \right)} - \left(\frac{9.81 kN/m^3 \cdot (5.67 m/s)^2}{[g]} \right) \right)}{9.81 kN/m^3} \right)$$

10) Head of Water given Total Tension in Pipe

 $\mathbf{H}_{ ext{liquid}} = rac{\mathrm{T}_{ ext{tkn}} - \left(rac{\gamma_{ ext{water}}\cdot\mathrm{A}_{ ext{cs}}\cdot\left(\mathrm{V}_{ ext{fw}}
ight)^2}{\left[\mathrm{g}
ight]}
ight)}{\gamma_{ ext{water}}\cdot\mathrm{A}_{ ext{cs}}}$

Open Calculator

 $\boxed{ \text{ex} \ 0.506716m = \frac{482.7 kN - \left(\frac{9.81 kN/m^3 \cdot 13 m^2 \cdot (5.67 m/s)^2}{[g]} \right)}{9.81 kN/m^3 \cdot 13 m^2} }$

11) Internal Water Pressure using Buttress Resistance 🗗

$$\mathbf{fx} \boxed{ p_i = \left(\left(\frac{P_{BR}}{2 \cdot A_{cs} \cdot sin\left(\frac{\theta_b}{2}\right)} \right) - \left(\frac{\gamma_{water} \cdot \left(V_{fw}^2\right)}{[g]} \right) \right) }$$

Open Calculator

$$\boxed{ 154.5363 \text{kN/m}^2 = \left(\left(\frac{1500 \text{kN}}{2 \cdot 13 \text{m}^2 \cdot \sin \left(\frac{36.0^{\circ}}{2} \right)} \right) - \left(\frac{9.81 \text{kN/m}^3 \cdot \left(\left(5.67 \text{m/s} \right)^2 \right)}{[\text{g}]} \right) \right) }$$

12) Internal Water Pressure using Total Tension in Pipe

 $p_i = \left(rac{T_{mn}}{A_{cs}}
ight) - \left(rac{\gamma_{water}\cdot\left(V_{fw}^2
ight)}{[g]}
ight)
ight|$

Open Calculator

$$\boxed{ 72.4555 kN/m^2 = \left(\frac{1.36 MN}{13 m^2} \right) - \left(\frac{9.81 kN/m^3 \cdot \left(\left(5.67 m/s \right)^2 \right)}{[g]} \right) }$$

13) Velocity of Flow of Water given Buttress Resistance

 $V_{\mathrm{fw}} = \sqrt{\left(rac{P_{\mathrm{BR}}}{\left(2\cdot A_{\mathrm{cs}}
ight)\cdot \sin\left(rac{ heta_{\mathrm{b}}}{2}
ight)} - \mathrm{p_{i}}
ight)\cdot \left(rac{[\mathrm{g}]}{\gamma_{\mathrm{water}}}
ight)}$

Open Calculator

$$\boxed{ 10.70734 m/s = \sqrt{ \left(\frac{1500 kN}{(2 \cdot 13 m^2) \cdot sin \left(\frac{36.0^{\circ}}{2} \right)} - 72.01 kN/m^2 \right) \cdot \left(\frac{[g]}{9.81 kN/m^3} \right) }$$

14) Velocity of Flow of Water given Total Tension in Pipe

 $\boxed{\kappa} V_{fw} = \sqrt{\left(T_{tkn} - (P_{wt} \cdot A_{cs})\right) \cdot \left(\frac{[g]}{\gamma_{water} \cdot A_{cs}}\right)}$

Open Calculator 🗗

$$= \sqrt{ \left(482.7 \text{kN} - \left(4.97 \text{kN} / \text{m}^2 \cdot 13 \text{m}^2 \right) \right) \cdot \left(\frac{[\text{g}]}{9.81 \text{kN} / \text{m}^3 \cdot 13 \text{m}^2} \right) }$$

15) Velocity of Flow of Water with known Head of Water and Buttress Resistance

 $V_{\mathrm{fw}} = \left(\left(rac{[\mathrm{g}]}{\gamma_{\mathrm{water}}}
ight) \cdot \left(\left(rac{P_{\mathrm{BR}}}{2 \cdot A_{\mathrm{cs}} \cdot \sin \left(rac{ heta_{\mathrm{b}}}{2}
ight)} - \mathrm{H} \cdot \gamma_{\mathrm{water}}
ight)
ight)
ight)$

Open Calculator

$$\underbrace{\text{ex}} 39.53272 \text{m/s} = \left(\left(\frac{[\text{g}]}{9.81 \text{kN/m}^3} \right) \cdot \left(\left(\frac{1500 \text{kN}}{2 \cdot 13 \text{m}^2 \cdot \sin \left(\frac{36.0^{\circ}}{2} \right)} - 15 \text{m} \cdot 9.81 \text{kN/m}^3 \right) \right) \right)$$

Variables Used

- A_{cs} Cross-Sectional Area (Square Meter)
- **H** Head of the Liquid (Meter)
- Higuid Head of Liquid in Pipe (Meter)
- PBR Buttress Resistance in Pipe (Kilonewton)
- p_i Internal Water Pressure in Pipes (Kilonewton per Square Meter)
- Pwt Water Pressure in KN per Square Meter (Kilonewton per Square Meter)
- T_{mn} Total Tension of Pipe in MN (Meganewton)
- T_{tkn} Total Tension in Pipe in KN (Kilonewton)
- **V**_{fw} Velocity of Flowing Water (Meter per Second)
- **V**_w Flow Velocity of Fluid (Meter per Second)
- Ywater Unit Weight of Water in KN per Cubic Meter (Kilonewton per Cubic Meter)
- θ_b Angle of Bend in Environmental Engi. (Degree)

Constants, Functions, Measurements used

• Constant: [g], 9.80665

Gravitational acceleration on Earth

• Function: asin, asin(Number)

The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.

• Function: sin, sin(Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

• Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

• Measurement: Length in Meter (m)
Length Unit Conversion

• Measurement: Area in Square Meter (m²)

Area Unit Conversion
 Measurement: Pressure in Kilonewton per Square Meter (kN/m²)

Pressure Unit Conversion

• Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

Measurement: Force in Kilonewton (kN), Meganewton (MN)
 Force Unit Conversion

• Measurement: Angle in Degree (°)

Angle Unit Conversion

Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)
 Specific Weight Unit Conversion

Check other formula lists

- Internal Water Pressure Formulas
- Stresses at Bends Formulas

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/5/2024 | 6:15:37 AM UTC

Please leave your feedback here...

